Section A1

Cleaning or Washing Activities

A1.1 Cleaning or Washing of Tools, Engines, and Manufacturing Equipment

This activity applies to businesses and public agencies that clean manufacturing equipment such as saws, grinders, screens, and other processing devices outside of buildings, and businesses engaged in pressure washing of engines, equipment, and portable objects.

Description of Pollutant Sources: Pollutant sources include toxic hydrocarbons, organic compounds, oils and greases, nutrients, heavy metals, pH, suspended solids, and oxygen demanding substances (i.e., BOD and COD).

Pollutant Control Approach: The preferred approach is to cover and/or contain the cleaning activity, or conduct the activity inside a building. Washwater must be conveyed to a sanitary sewer after approval by your sewer service provider, temporarily stored before proper disposal, or recycled, with no discharge to the ground, a storm drain, or surface water. Washwater may be discharged to the ground after proper treatment in accordance with *Ecology guidance WQ-R-95-56, "Vehicle and Equipment Washwater Discharges," /Best Management Practices Manual November 2012,* or most recent update. The quality of any discharge to the ground after proper treatment (gravity separation followed by media filtration) must comply with the Water Quality Standards for Groundwaters of the State of Washington, Chapter 173-200 WAC. Contact the Ecology Southwest Regional Office for an NPDES permit application for discharge of washwater to surface water or to a storm drain after on-site treatment.

Required BMPs

The following BMPs (or equivalent measures) are required of all businesses and public agencies that clean or wash tools, engines, equipment, and portable objects:

- Illicit connections to the stormwater drainage system must be eliminated. See BMP S.1 in Chapter 5 for detailed information.
- Train employees to control washing operations to prevent stormwater contamination.
- All washwater must discharge to a holding tank, process treatment system, or sanitary sewer--never to the stormwater drainage system. See BMP S.3 in Chapter 5 for instructions.
- Pressure washing must be performed in a designated area (such as a wash pad) provided with a sump drain and stormwater run-on prevention (Figures IV 4.1 and 4.2). See BMPs S.6 and S.7 in Chapter 5 for information on sumps (or holding tanks) and run-on prevention. Contact your sewer service provider for pre-treatment requirements and for washing operation policy.

(Photo courtesy of Seattle Public Utilities) Figure IV - 4.1 Wash Pad for Tool and Equipment Washing.

Figure IV - 4.2 Uncovered Washing Area for Tools, Engines, Equipment, and Portable Objects, with Drains to a Sanitary Sewer, Process Treatment, or a Dead-End Sump.

Suggested BMPs

The following BMPs are not required but can provide additional pollution control:

- If soaps or detergents are used, use the least toxic cleaner capable of doing the job. Use non-phosphate detergent, if possible, to reduce loadings at your local wastewater treatment plant.
- Limit the amount of water used in washing activities to reduce the potential of runoff carrying pollutants beyond the designated wash pad or capture system.
- Recycle washwater for subsequent washings.
- Implement one or more of the stormwater treatment BMPs found in Volume V.

NOTE: For discharging wash waters containing soaps and detergents, the use of infiltration, bioretention, biofiltration, wet ponds, and wetlands must not result in the violation of groundwater quality standards.

A1.2 Cleaning or Washing of Cooking Equipment

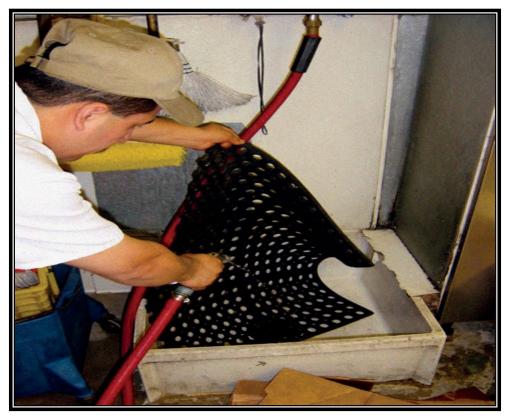
This activity applies to businesses that clean cooking equipment such as vent filters, grills, and grease traps outside of buildings.

Description of Pollutant Sources: Pollutants of concern consist of oil and grease, nutrients, suspended solids, and oxygen demanding substances (i.e., BOD and COD).

Pollutant Control Approach: Businesses engaged in this activity that cannot connect discharges to a sanitary sewer, holding tank, or process water treatment system must contact Ecology and obtain a NPDES wastewater permit.

Required BMPs

The following BMPs or equivalent measures are required of all businesses engaged in cleaning or washing of cooking equipment:


- Illicit connections to the stormwater drainage system must be eliminated. See BMP S.1 in Chapter 5 for detailed requirements.
- Employees must be educated about the need to prevent stormwater contamination from washing operations.
- Washwater cannot be discharged to the stormwater drainage system.
- Paved washing areas must be swept daily to collect loose solid materials for proper disposal.
- Greasy buildup on cooking equipment must be removed and properly disposed of prior to washing to reduce the amount of material that can potentially contaminate runoff.
- Move the activity indoors with drainage to a sanitary sewer, holding tank, or process treatment system (Figure IV 4.3). See BMP S.3 in Chapter 5 for further information on drainage alternatives. Any connection to the sanitary sewer requires the approval of the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your sewer service provider, if your site is not within the LOTT service area.

OR

Use a tub or similar device to contain washwater. This water must be recycled for subsequent washing, or disposed of in a holding tank or sanitary sewer.

OR

If the washing activity cannot be moved indoors or contained in a tub, then the washing area must drain to a sanitary sewer, holding tank, or process treatment system, and provisions must be made to prevent stormwater run-on onto the washing area. See BMP S.3 in Chapter 5 for detailed drainage requirements and BMP S.7 for run-on prevention schemes. If discharging to a sanitary sewer, permits must be obtained from the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider if your site is not within the LOTT service area.

(Photo courtesy of Seattle Public Utilities) Figure IV - 4.3 Cleaning and Washing Cooking Equipment Indoors.

• If a holding tank is used for storage of washwater, the contents must be pumped out before it is full and disposed of appropriately to a sanitary sewer or wastewater treatment system.

Suggested BMPs

The following BMPs are not required but can provide additional pollution protection:

• A cover should be placed over a designated wash area to keep rain from falling on dirty equipment and producing contaminated runoff.

A1.3 Washing, Pressure Washing, and Steam Cleaning of Vehicles/Equipment/Building Structures

Description of Pollutant Sources: Pollutant sources include the commercial cleaning of vehicles, aircraft, vessels, carpets, industrial equipment, and large buildings with low or high pressure water or steam. This includes "charity" car washes at gas stations and commercial parking lots. The cleaning can include hand washing, scrubbing, sanding, etc. Washwater from cleaning activities can contain oil and grease, suspended solids, heavy metals, soluble organics, soaps, and detergents that can contaminate stormwater.

Pollutant Control Approach: The preferred approach is to cover and/or contain the cleaning activity, or conduct the activity inside a building, to separate the uncontaminated stormwater from the washwater sources. Contact the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider for advice and consultation on appropriate treatment and for approvals to discharge to sanitary sewer. Washwater must be conveyed to a sanitary sewer after approval by the LOTT Alliance Industrial Pretreatment Program, or temporarily stored before proper disposal or recycling, with no discharge to the ground, a storm drain, or surface water.

The Industrial Stormwater General Permit prohibits the discharge of process wastewater (e.g., vehicle washing wastewater) to groundwater or surface water. Stormwater that commingles with process wastewater is considered process wastewater.

Facilities not covered under the Industrial Stormwater General Permit that are unable to follow one of the preferred approaches listed above may discharge washwater to the ground after proper treatment in accordance with *Ecology guidance WQ-R-95-56*, *Vehicle and Equipment Washwater Discharges/Best Management Practices Manual, November 2012, or most recent update.* The quality of any discharge to the ground after proper treatment (gravity separation followed by media filtration) must comply with the Water Quality Standards for Groundwaters of the State of Washington, Chapter 173-200 WAC. Contact the Ecology Southwest Regional Office to discuss permitting options for discharge of washwater to surface water or to a storm drain after on-site treatment.

Required BMPs

Conduct vehicle and equipment washing in one of the following locations:

- At a commercial washing facility in which the washing occurs in an enclosure and drains to the sanitary sewer, or
- In a building constructed specifically for washing of vehicles and equipment, which drains to a sanitary sewer.

Conduct outside washing operation in a designated wash area with the following features:

- In a paved area, construct a spill containment pad to prevent the run-on of stormwater from adjacent areas. Slope the spill containment area to collect washwater in a containment pad drain system with perimeter drains, trench drains, or catchment drains. Size the containment pad to extend out a minimum of four feet on all sides of the vehicles and/or equipment being washed.
- Convey the washwater to a sump (like a grit separator) and then to a sanitary sewer (if allowed by the your sewer service provider), or other appropriate wastewater treatment or recycle system. The containment sump must have a positive control outlet valve for spill control with live containment volume, and oil/water separation. Size the minimum live storage volume to contain the maximum expected daily washwater flow plus the sludge storage volume below the outlet pipe. Shut the outlet valve during the washing cycle to collect the washwater in the sump. The valve should remain shut for at least two hours following the washing operation to allow the oil and solids to separate before discharge to a sanitary sewer.
- Use a two-way valve for discharges from the containment pad. This valve should normally be switched to direct water to treatment but may be switched to the drainage system after that pad is clean to handle stormwater runoff. The stormwater can then drain into the conveyance/discharge system outside the wash pad (essentially bypassing the sanitary sewer or recycle system). Post signs to inform people of the operation and purpose of the valve. Clean the concrete pad thoroughly until there is no foam or visible sheen in the washwater prior to closing the inlet valve and allowing uncontaminated stormwater to overflow and drain off the pad. Note that the purpose of the valve is to covey only washwater and contaminated stormwater to a treatment system. Collect the washwater from building structures and convey it to appropriate treatment such as a sanitary sewer system if it contains oils, soaps, or detergents. If the washwater does not contain oils, soaps, or detergents (in this case only a low pressure, clean, cold water rinse is allowed), then it could drain to soils that have sufficient natural attenuation capacity for dust and sediment.
- Sweep surfaces prior to cleaning/washing to remove excess sediment and other pollutants.
- If roof equipment or hood vents are cleaned, ensure that no washwater or process water is discharged to the roof drains or drainage system.
- Label all mobile cleaning equipment as follows: "Properly dispose of all washwater. Do not discharge to an inlet/catch basin, ditch, stream, or on the ground.
- Any discharge to the sanitary sewer requires the approval of the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local

sewer service provider. Contact the utility for details on approved systems.

Suggested BMPs

- Mark the wash area at gas stations, multifamily residences, and any other business where non-employees wash vehicles.
- All valves must be positive control valves (e.g. gate valve). A pneumatic or electric valve system is preferable, however, operators may use a manually operated positive control valve for uncovered wash pads. The valve may be opened upon completion of a wash cycle. After draining the sump or separator, the valve shall be closed.
- Minimize the use of water and detergents in washing operations when practicable.
- Use phosphate-free biodegradable detergents when practicable.
- Use the least hazardous cleaning products available.
- Consider recycling the washwater.
- Operators may use soluble/emulsifiable detergents in the wash medium, but should use it with care and the appropriate treatment. Carefully consider the selection of soaps and detergents and treatment BMPs. Oil/water separators are ineffective in removing emulsified or water soluble detergents. Another treatment appropriate for emulsified and water soluble detergents may be required. Check with the local sanitary sewer provider or the manual referenced in Section A1.3 above.
- At commercial parking lots, where it is not possible to discharge the washwater to a sanitary sewer, a temporary plug or a temporary sump pump can be used at the storm drain to collect the washwater for off-site disposal at an authorized location per Section A1.3.

Charity car washes are not allowed to discharge washwater to the County stormwater drainage system. For optional fund-raiser information, contact the Puget Sound Car Wash Association at (800) 509-9274. Online, visit: http://www.streamteam.info/actions/carwashing/.

• New and used car dealerships may wash vehicles in the parking stalls without soap, or if an approved treatment system for the washwater is in place.

At industrial sites, contact the Ecology Southwest Regional Office for NPDES permit requirements even if soaps, detergents, and/or other chemical cleaners are not used in washing trucks.

A1.4 Collection and Disposal of Wastewater in Mobile Interior Washing Operations

This activity applies to businesses that wash carpets and other interior items on a mobile site-to-site basis. The typical fleet washing process includes use of machines that spray the washwater solution onto the carpet or upholstery and then vacuums the dirty solution up into a portable tank with limited capacity.

Description of Pollutant Sources: Pollutants of concern are nutrients, suspended solids, organic compounds (such as pesticides and chemicals used for flea and odor control), and oxygen demanding substances (i.e., BOD and COD).

Pollutant Control Approach: Previously, common practice was to discharge the dirty solution to the ground or to a drain connected to the stormwater drainage system between site visits. **These practices are now illegal.** This point must be made clear to all employees. Wastewater from mobile washing operations may be permitted for sanitary sewer disposal if it does not contain high concentrations of toxic materials.

Required BMPs

The following BMPs are required of all businesses doing mobile interior wash activities:

- Wastewater from mobile washing operations must be poured into a sanitary sewer drain at the site of collection, the business office, or at another proper location. If discharging to a sanitary sewer, permits must be obtained from the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider.
- Absolutely no wastewater from mobile interior wash activities can be disposed of outdoors, or to a drain connected to the stormwater drainage system.
- Some chemicals used for flea and odor control are listed by U.S. Environmental Protection Agency (U.S. EPA) as toxics. The LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider will need to know the type of chemicals and amount of water you intend to discharge. If the discharge is approved, they will then issue a permit for your activity.
- If sanitary sewer disposal is not available or not allowed, the collected wastewater must be returned to the business site for process treatment or transfer to a holding tank. See BMP S.3 in Chapter 5 for details on these drainage/disposal alternatives.

Suggested BMPs

The following BMPs are not required, but can provide additional pollution protection:

• Use the least toxic detergents and cleaners that will get the job done. Select non-phosphate detergents when possible.

- Limit the amount of water used in interior washing operations. This will save you time, money, and effort when it comes to proper disposal.
- Recycle washwater for more than one use.

A1.5 Dock Washing

Description of Pollutant Sources: Washing docks (or wharves, piers, floats, and boat ramps) can result in the discharge of dirt, bird feces, soaps, and detergents that can be toxic to aquatic life, especially after they take on contaminants while cleaning. The BMPs in this section do not address dry docks, graving docks, or matin railway cleaning operations.

Pollutant Control Approach: Use dry methods and equipment (scraping, sweeping, vacuuming) to remove debris and contaminants prior to cleaning with water to prevent these substances from entering surface water.

Required BMP:

Surface Preparation and Spot Cleaning

- Scoop and collection debris and bird feces.
- Sweep, capture, and dispose of debris from the dock as solid waste. Sweep or vacuum docks to minimize the need for chemical cleaners.
- During cleaning activities, if debris, substances, or wash water could enter surface waters through drains, temporarily block the drains and collect the water for proper disposal.
- Hose down the area if necessary and collect water as feasible.
- Try spot cleaning with water and a coarse cloth before using soaps or detergents.
- If a cleaner is needed for spot cleaning:
 - Mix it in a bucket and use it to scrub down only the areas that need extra attention.
 - Start with vinegar and baking soda and move to other options as needed. Spot clean using a rag if harsher cleaning products are needed.
 - Avoid or minimize the use of petroleum distillates, chlorinated solvents, and ammoniated cleaning agents.

- Use degreasers or absorbent material to remove residual grease by hand and do not allow this material to enter surface water.
- Keep cleaners in sealed containers. Keep cleaner containers closed securely when transporting between the shore and docks.
- Properly dispose of the dirty bucket water.
- Minimize the scour impact of wash water to any exposed soil at the landward end(s) of the dock or below the dock. Place a tarp over exposed soil, plant vegetation, or put berms to contain eroded soil.

Dock Washing and Disposal

- To the extent practicable, collect any wash water generated from hosing down, pressure washing, or cleaning dock areas, and dispose of it properly.
- Try pressure washing using light pressure. This uses less water and decreases the need for soap and scrubbing when washing the dock. Avoid using excessive pressure, which may damage the dock or send flakes of paint and other material into the water.
- Do not place any debris and substances resulting from cleaning activities in shoreline areas, riparian areas, or on adjacent land where these substances may erode into waters of the state.
- Where treated wood associated with the structure being washed are present, use non-abrasive methods and tools that, to the maximum extent practicable, minimize removal of the creosote or treated wood fibers when it removes marine growth from creosote or any other treated wood.
- Do not discharge removed marine growth to waters of the state where such marine growth would accumulate on the seabed.
- Do not discharge emulsifiers, dispersants, solvents, or other toxic deleterious materials to waters of the state.

A1.6 Potable Water Line Flushing, Water Tank Maintenance, and Hydrant Testing

Description of Pollutant Source: Flushing is a common maintenance activity used to improve pipe hydraulics and to remove pollutants in systems. Flushing done improperly can result in the discharge of solids to receiving waters. Hydrant testing may result in the discharge of rust particles

Chemicals used in line flushing and tank maintenance are highly toxic to aquatic organisms and can degrade receiving waters.

Pollutant Control Approach: Dechlorinate and pH adjust water used for flushing, tank maintenance, or hydrant testing. Dispose of the water to the sanitary sewer if possible.

Required BMPs

- Remove solids from associated curbs and gutters before flushing water. Use erosion and sediment control BMPs such as BMPs C235, C220, etc. to collect any solids resulting from flushing activities.
- If using super chlorination or chemical treatment as part of flushing, discharge water to the sanitary sewer. If sanitary sewer is not available, the water may be infiltrated to the ground as long as all of the following are met:
 - The water is dechlorinated to a total residual chlorine of 0.1 ppm or less.
 - Water quality standards are met.
 - A diffuser is used to prevent erosion.
 - The water does not cross property lines.
- Discharging water to a drainage system requires approval from the Thurston County Water Resources Division at 360-754-4681. The discharged water shall be dechlorinated to a total residual chlorine concentration of no more than 0.1 ppm and pH adjusted if necessary. Water must also be volumetrically and velocity controlled to prevent resuspension of sediments or pollutants in the municipal separate storm system (MS4).
- Do not overapply dichlorination agents. This can deplete the dissolved oxygen concentration and reduce the pH in discharge/receiving waters.

Suggested BMPs

- If possible, design flushing to convey accumulated material to strategic locations, such as to the sanitary sewer or to a treatment facility, thus preventing re-suspension and overflow of a portion of the solids during storm events.
- If possible, conduct flushing and tank maintenance activities on non-rainy days and during the time of year that poses the least risk to aquatic biota.
- Treatment for dichlorination can include an application of a stoichiometric quantity of:
 - Ascorbic Acid, Sodium Ascorbate (Vitamin C)
 - o Calcium Thiosulfate
 - Sodium Sulfite tablets
 - o Sodium Thiosulfate
 - o Sodium Bisulfite
 - Alternate Dechlorination Solutions

Section A2

Transfer of Liquid or Solid Materials

A2.1 Loading and Unloading Areas for Liquid or Solid Material

Description of Pollutant Sources: Loading and unloading of liquid and solid materials at industrial and commercial facilities is typically conducted at shipping and receiving, outside storage, and fueling areas. Transferred materials can include raw materials, waste materials, fuels, and scrap metals. Leaks and spills of fuels, oils, powders, organics, heavy metals, salts, acids, alkalis, and other chemicals during transfer are potential causes of stormwater contamination. Spills from hydraulic line breaks are a common problem at loading docks.

Pollutant Control Approach: Cover and contain the loading/ unloading area where necessary to prevent run-on of stormwater and runoff of contaminated stormwater.

Required BMPs

At All Loading/Unloading Areas:

• A significant amount of debris can accumulate at outside, uncovered loading/unloading areas. Sweep these surfaces frequently to remove loose material that could contaminate stormwater. Sweep areas that are covered by containers, logs, or other material after the areas are cleared.

• Place drip pans, storm drain covers or other temporary containment devices at locations where leaks or spills may occur such as hose connections, hose reels, and filler nozzles. Always use pans when making and breaking connections (Figure IV - 4.4). Check loading/unloading equipment such as valves, pumps, flanges, and connections regularly for leaks and repair as needed. Consistent with applicable fire code requirements and to the extent practicable, conduct unloading or loading of solids and liquids in a manufacturing building or under a roof, lean-to, or other appropriate cover.

• Berm, dike, and/or slope the loading/unloading area to prevent run-on of stormwater and to prevent the runoff or loss of any spilled material from the area.

• Place curbs along the edge, or slope the edge such that the stormwater can flow to an internal stormwater drainage system that leads to an approved treatment BMP. Do not allow stormwater to drain directly to the surface water from loading areas.

• Pave and slope loading/unloading areas to prevent the pooling of water. Minimize the use of catch basins and drain lines within the interior of the loading/unloading area or place them in designated "alleyways" to avoid being covered by material, containers, or equipment.

• Retain the necessary materials for rapid cleanup of spills on site.

At Tanker Truck and Rail Transfer Areas to Above/Below-ground Storage Tanks:

• To minimize the risk of accidental spillage, prepare an "Operations Plan" that describes procedures for loading/unloading. Train the employees,

especially fork lift operators, in its execution and post it or otherwise have it readily available to employees and regulatory officials.

- Report spills of reportable quantities to Ecology Southwest Regional Office at (360) 407-6300.
- Prepare and implement an emergency spill cleanup plan for the facility (BMP A7.15 Spills of Oil and Hazardous Substances) which includes the following BMPs:
 - Ensure cleanup of liquid/solid spills in the loading/unloading area immediately if a significant spill occurs, upon completion of the loading/unloading activity, or at the end of the working day.
 - Retain and maintain an appropriate oil spill cleanup kit on site for rapid cleanup of material spills (see BMP A7.15 Spills of Oil and Hazardous Substances).
 - Ensure that an employee trained in spill containment and cleanup is present during loading/unloading.

At Rail Transfer Areas to Above/Below-ground Storage Tanks:

• Install a drip pan system as illustrated (Figure IV - 4.4) within the rails to collect spills/leaks from tank cars and hose connections, hose reels, and filler nozzles.

Loading/Unloading from/to Marine Vessels:

• Facilities and procedures for the loading or unloading of petroleum products must comply with Coast Guard requirements.

Transfer of Small Quantities from Tanks and Containers:

• Refer to BMPs A4.8 Storage of Liquids in Permanent Aboveground Tanks and A4.7 Storage of Liquid, Food Waste, or Dangerous Waste Containers for requirements on the transfer of small quantities from tanks and containers, respectively.

⁽Photo courtesy of Mark Dilley, Interstate Products, Inc.)

Figure IV - 4.4 Drip Pan for Connections at Loading and Unloading Areas for Liquid Material.

Suggested BMPs

• For the transfer of pollutant liquids in areas that cannot contain a catastrophic spill, install an automatic shutoff system in case of unanticipated off-loading interruption (e.g., coupling break, hose rupture, overfill, etc.).

At Loading and Unloading Docks:

- Install/maintain overhangs or door skirts that enclose the trailer end (Figures IV 4.5 and 4.6) to prevent contact with rainwater.
- Design the loading/unloading area with berms, sloping, etc. to prevent the run-on of stormwater.

Figure IV - 4.5 Loading Docks with an Overhang to Prevent Material Contact with Rainwater.

Figure IV - 4.6 Door Skirts to Enclose the Trailer End of a Truck to Prevent Material Contact with Rainwater.

At Tanker Truck Transfer Areas to Above/Below-Ground Storage Tanks:

- Pave the area on which the transfer takes place. If any transferred liquid, such as gasoline, is reactive with asphalt, pave the area with Portland cement concrete.
- Slope, berm, or dike the transfer area to a dead-end sump, spill containment sump, spill control oil/water separator, or other spill control device. The minimum spill retention time should be 15 minutes at the highest fuel dispenser nozzle through-put rate or the peak flow rate of the 6-month, 24-hour storm event over the surface of the containment pad, whichever is greater. The volume of the spill containment sump shall be a minimum of 50 gallons with an adequate grit sedimentation volume.

A2.2 Fueling at Dedicated Stations

Description of Pollutant Sources: A fueling station is a facility dedicated to the transfer of fuels from a stationary pumping station to mobile vehicles or equipment. It includes above or under-ground fuel storage facilities. In addition to general service gas stations, fueling may also occur at 24-hour convenience stores, construction sites, warehouses, car washes, manufacturing establishments, port facilities, and businesses with fleet vehicles. Typical causes of stormwater contamination at fueling stations include leaks/spills of fuels, lube oils, radiator coolants, and vehicle washwater.

Pollutant Control Approach: New or substantially remodeled fueling stations must be constructed on an impervious concrete pad under a roof to keep out rainfall and stormwater run-on. Substantial remodeling includes replacing the canopy or relocating or adding one or more fuel dispensers in such a way that the Portland cement concrete (or equivalent) paving in the fueling area is modified. The facility must use a treatment BMP for contaminated stormwater and wastewaters in the fueling containment area.

* Substantial remodeling includes (but is not limited to) replacing the canopy, or relocating or adding one or more fuel dispensers in such as way that modifies the Portland cement concrete (or equivalent) paving in the fueling area.

Required BMPs

- Prepare an emergency spill response and cleanup plan (per BMP A7.15 Spills of Oil and Hazardous Substances).
- Have a designated trained person(s) available either on site or on call at all times to promptly and properly implement that plan and immediately cleanup all spills.
- Keep suitable cleanup materials, such as dry adsorbent materials, on site to allow prompt cleanup of a spill.
- Train employees on the proper use of fuel dispensers and on the spill plan. Post signs in accordance with Uniform Fire Code (UFC) or International Fire Code (IFC). For example, post "No Topping Off" signs (topping off gas tanks causes spillage and vents gas fumes to the air).
- Make sure that the automatic shut off on the fuel nozzle is functioning properly.
- The person conducting the fuel transfer must be present at the fueling pump during fuel transfer, particularly at unattended or self-serve stations.
- Refer to A2.5 In-Water and Over-Water Fueling for BMPs for in-water or over-water fueling operations.
- Keep drained oil filters in a suitable container or drum.

For new or substantially remodeled fueling stations:

- Design the fueling island to:
 - Minimize stormwater contamination.
 - Control spills (dead-end sum or spill control separator in compliance with the UFC or IFC).
 - Collect stormwater and/or wastewater and direct it to an appropriate treatment system.
- Slope the concrete containment pad around the fueling island toward drains: trench drains, catch basins, and/or a dead-end sump. The slope of the drains shall not be less than 1 percent.
- Drains form containment pads must have a normally closed shutoff valve. The valve may be opened to convey contaminated stormwater to oil removal treatment such as an API or CP oil/water separator, catch basin insert, or equivalent treatment, and then to a basic treatment BMP (as described in Volume I, 4.2 Step-by-Step Runoff Treatment BMP Selection Process) or to a sanitary sewer, if approved by the sewer authority. Discharges from treatment systems to storm sewer or surface water or to the ground must not display ongoing or recurring visible sheen and must not contain a significant amount of oil and grease.
- The spill control capacity must be sized in compliance with Section 7901.8 of the UFC. The spill control capacity may be acquired by either an underground system including a sump, or an above ground containment area consisting of a containment pad with berms.
- The fueling island may be designed as a spill containment pad with a sill or berm raised to a minimum of 4 inches (or in accordance with the applicable fire code) to prevent the runoff of spilled liquids and to prevent run-on of stormwater from the surrounding area. All stormwater collected on the containment pad must discharge to treatment with a normally closed valve downstream of the treatment.
- The fueling pad must be paved with Portland cement concrete, or equivalent. Asphalt is not considered an equivalent material.
- The fueling island must have a roof or canopy to prevent the direct entry of precipitation onto the spill containment pad (Figure IV -4.7). The roof or canopy shall, at a minimum, cover the spill containment pad (within the grade break or fuel dispensing area) and preferably extend 3 feet on each side for roofs and canopies 10 feet or less in height and 5 feet on each side for roofs and canopies greater than 10 feet in height to reduce the introduction of

windblown rain. Measure the overhang relative to the berm or other hydraulic grade break for the spill containment pad.

Figure IV - 4.7 Roof at Fueling Island to Prevent Stormwater Run-on.

- Convey all roof drains to storm drains outside the fueling containment area.
- Convey stormwater collected on the fuel island containment pad to a sanitary sewer system, if approved by the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider; or to an approved treatment system such as an oil/water separator and a basic treatment BMP (basic treatment BMPs are listed in Volume V and include media filters and biofilters). Discharges from treatment systems to storm drains or surface water or to the ground must not display ongoing or recurring visible sheen and must not contain oil or grease.
- Alternatively, collect stormwater from the fuel island containment pad and hold for proper off-site disposal.
- Obtain approval from the LOTT Alliance Industrial Pretreatment Program or your local sewer service provider for conveyance of any fuelcontaminated stormwater to a sanitary sewer and comply with pretreatment regulations (WAC 173-216-060). These regulations prohibit discharges that could "cause fire or explosion." State and federal pretreatment regulations define an explosive or flammable mixture based on a flash point determination of the mixture. Stormwater could be conveyed to a sanitary sewer system if it is determined not to be explosive. Contact the LOTT Alliance at (360) 528-5708 or your local sewer service provider.

• Transfer the fuel from the delivery tank trucks to the fuel storage tank in impervious contained areas and ensure that appropriate overflow protection is used. Alternatively, cover nearby storm drains during the filling process and use drip pans under all hose connections.

Additional BMP for Vehicles 10 Feet in Height or Greater:

A roof or canopy may not be practicable at fueling stations that regularly fuel vehicles that are 10 feet in height or greater, particularly at industrial or WSDOT sites. At those types of fueling facilities, the following BMPs apply, as well as all of the other required BMPs and fire prevention requirements of this BMP for fueling stations.

- If a roof or canopy is impractical, the concrete fueling pad must be equipped with emergency spill control, including a shutoff valve for the drainage from the fueling area. Maintain the valve in the closed position. Clean up spills and dispose of materials off site in accordance with BMP A7.15 Spills of Oil and Hazardous Substances.
- The valve may be opened to convey contaminated stormwater to a sanitary sewer, if approved by the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider, or to oil removal treatment such as an American Petroleum Institute (API) or coalescent plate oil/water separator, or equivalent treatment, and then to a basic treatment BMP. See Volume V for more information. Discharges from treatment systems to storm drains or surface water or to the ground must not display ongoing or recurring visible sheen and must not contain oil or grease.

A2.3 Engine Repair and Maintenance

Description of Pollutant Sources: This activity applies to businesses and public agencies where fuel filters, engine oil, and other fluids such as battery acid, coolants, and transmission and brake fluids are removed and replaced in vehicles and equipment. It also applies to mobile vehicle maintenance operations, such as at construction sites. Related vehicle maintenance activities are covered under the following activity headings in this volume, and other BMPs provided in this volume:

- <u>A1.3</u> Washing, Pressure Washing, and Steam Cleaning of Vehicles/Equipment/Building Structures
- A2.1 Loading and Unloading Areas for Liquid or Solid Material
- A2.2 Fueling at Dedicated Stations
- A2.4 Mobile Fueling of Vehicles and Heavy Equipment
- <u>A3.7</u> Painting, Finishing, and Coating of Vehicles, Boats, Buildings, and Equipment
- <u>A4.1</u> Storage or Transfer (Outside) of Solid Raw Materials, By-Products, or Finished Products
- <u>A4.7</u> Storage of Liquid, Food Waste, or Dangerous Waste Containers
- A4.8 Storage of Liquids in Permanent Aboveground Tanks
- A4.9 Parking and Storage for Vehicles and Equipment
- A7.15 Spills of Oil and Hazardous Substances

Pollutants of concern include toxic hydrocarbons, toxic organic compounds, oils and greases, pH, and heavy metals.

Pollutant Control Approach: Control of leaks and spills of fluids using good housekeeping and cover and containment BMPs.

Required BMPs

The following BMPs or equivalent measures are required of all businesses and agencies engaged in engine and vehicle repair:

• Employees must be educated about the need for careful handling of automotive fluids. Employees at businesses or agencies who routinely change or handle these fluids must be trained in spill response and cleanup procedures. Inspect all incoming vehicles, parts, and equipment stored temporarily outside for leaks.

- Remove batteries and liquids from vehicles and equipment in designated areas designed to prevent stormwater contamination. Store cracked batteries in a covered non-leaking secondary containment system.
- Empty fuel filters before disposal.
- Spill cleanup materials, such as rags and absorbent materials, must always be kept close at hand when changing oil and other fluids. You can comply more easily with sewer and stormwater requirements by running a 'dry shop', thereby reducing your consumption/discharge of liquids. Soiled rags and other cleanup material must be properly disposed of or cleaned and reused. Contact Thurston County Waste Management at (360) 867-2300 or your local solid waste hauler for proper disposal options.
- No drains inside maintenance buildings may connect to the sanitary sewer without prior written approval of your sewer service provider. Contact the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider. Interior drains will not be allowed to be connected to the stormwater drainage system.
- Do not hose down the maintenance/repair area. Instead, sweep the area weekly to collect dirt, and wipe up spills with rags and other absorbent materials.
- If the work is done at a mobile location, such as a construction site, a tarpaulin, ground cloth, or drip pans must be used beneath the vehicle or equipment to capture all spills and drips (Figure IV 4.8). The collected drips and spills must be recycled or disposed of properly. See BMP S.2 in Chapter 5 for disposal options.

Figure IV - 4.8 Drip Pan for Use at Mobile Sites.

• If this activity occurs at a stationary business location, the activity area must be moved indoors. An exception to this requirement would be equipment that is too large to fit under a roofed area. In this case, the outdoor area must be paved, provided with a sump drain, and provision

made for stormwater run-on prevention. See BMP S.6 and S.7 in Chapter 5 for more on paving, sump drains and holding tanks, and run-on prevention. Contact the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider for information on requirements for disposal to sewer. If you are on a septic tank, sump contents will need to be pumped and disposed of by an oil recycler or hazardous waste company.

- Recycle oil, antifreeze, batteries, and air conditioning coolant.
- Contaminated stormwater runoff from vehicle staging and maintenance areas must be conveyed to an API or coalescing plate oil and water separator followed by a basic treatment BMP (see Volume V), applicable filter, or other equivalent oil treatment system.

Suggested BMPs

- Drain all fluids from wrecked vehicles and 'parts' cars/equipment upon arrival. Recover air conditioning gases.
- Use reusable cloth rags to cleanup drips and small spills instead of disposables: these can be professionally laundered and reused. Do not attempt to launder these at home or at a coin-op laundry.
- Use absorbent pillows or booms in or around storm drains and catch basins to absorb oil and fuel.

A2.4 Mobile Fueling of Vehicles and Heavy Equipment

Description of Pollutant Sources: Mobile fueling, also known as fleet fueling, wet fueling, or wet hosing, is the practice of filling fuel tanks of vehicles by tank trucks that are driven to the yards or sites where the vehicles to be fueled are located.

Historically mobile fueling has been conducted for off-road vehicles that are operated for extended periods of time in remote areas. This includes construction sites, logging operations, and farms. Mobile fueling of on-road vehicles is also conducted commercially in the State of Washington.

Note that some local fire departments may have restrictions on mobile fueling.

Pollutant Control Approach: Proper training of the fueling operator, and the use of spill/drip control and reliable fuel transfer equipment with backup shutoff valving are needed.

Required BMPs

Organizations and individuals conducting mobile fueling operations must implement the following BMPs. The operating procedures for the driver/operator should be simple, clear, effective and their implementation verified by the organization that will potentially be liable for environmental and third party damage.

- Ensure that all mobile fueling operations are approved by the applicable Thurston County fire district or Fire Marshal and comply with applicable fire codes.
- In fueling locations that are in close proximity to sensitive aquifers, designated wetlands, wetland buffers, or other waters of the state, Thurston County acceptance is necessary to ensure compliance with additional local requirements.
- Ensure compliance with all 49 CFR 178 requirements for DOT 406 cargo tanker. Documentation from a U.S. Department of Transportation Registered Inspector shall be proof of compliance.
- Ensure the presence and the constant observation/monitoring by the driver/operator at the fuel transfer location at all times during fuel transfer and ensure that the following procedures are implemented at the fuel transfer locations:
 - Locating the point of fueling at least 25 feet from the nearest storm drain or inside an impervious containment with a volumetric holding capacity equal to or greater than 110 percent of the fueling tank volume, or covering the storm drain to ensure no inflow of spilled or leaked fuel. Covers are not required for storm drains that convey the inflow to a spill control separator approved by Thurston County,

including the Thurston County Fire Marshal. Potential spill/leak conveyance surfaces must be impervious and in good repair.

- Place a drip pan or an absorbent pad under each fueling location prior to and during all dispensing operations. The pan (must be liquid tight) and the absorbent pad must have a capacity of at least 5 gallons. There is no need to report spills retained in the drip pan or the pad.
- Manage the handling and operating of fuel transfer hoses and nozzle, drip pan(s), and absorbent pads as needed to prevent spills/leaks of fuel from reaching the ground, storm drains, and receiving waters.
- Avoid extending the fueling hoses across a traffic lane without fluorescent traffic cones, or equivalent devices, conspicuously placed so that all traffic is blocked from crossing the fuel hose.
- Remove the fill nozzle and cease filling the tank when the automatic shut-off valve engages. Do not lock automatic shutoff fueling nozzles in the open position.
- Do not "top off" the fuel receiving equipment.
- Provide the driver/operator of the fueling vehicle with:
 - Adequate flashlights or other mobile lighting to view fuel fill openings with poor accessibility. Consult with the Thurston County Fire Marshal for additional lighting requirements.
 - Two-way communication with his/her home base.
- Train the driver/operator annually in spill prevention and cleanup measures and emergency procedures. Make all employees aware of the significant liability associated with fuel spills.
- The responsible manager shall properly sign and date the fueling operating procedures. Distribute procedures to the operators, retain them in the organization files, and make them available in the event an authorized government agency requests a review.
- Immediately notify the local fire district (or fire department) and the Ecology Southwest Regional Office in the event of any spill entering surface water or groundwater. Establish a "call down list" to ensure the rapid and proper notification of management and government officials should any significant amount of product be lost off site. Keep the list in a protected but readily accessible location in the mobile fueling truck. The "call down list" should also identify spill response contractors available in the area to ensure the rapid removal of significant product spillage into the environment.

- Maintain a minimum of the following spill cleanup materials in all fueling vehicles, that are readily available for use:
 - Non-water absorbents capable of absorbing at least 15 gallons of diesel fuel
 - A storm drain plug or cover kit
 - A non-water absorbent containment boom of a minimum 10 feet in length with a 12-gallon absorbent capacity (Figure IV - 4.9)
 - A non-spark generating shovel (a steel shovel could generate a spark and cause an explosion in the right environment around a spill)
 - Two, 5-gallon buckets with lids.

Figure IV - 4.9 Spill Containment Boom.

- Use automatic shutoff nozzles for dispensing the fuel. Replace automatic shut-off nozzles as recommended by the manufacturer.
- Maintain and replace equipment on fueling vehicles, particularly hoses and nozzles, at established intervals to prevent failures.
- Include the following fuel transfer site components:
 - Automatic fuel transfer shut-off nozzles; and
 - An adequate lighting system at the filling point.

A2.5 In-Water and Over-Water Fueling

Description of Pollutant Sources: BMPs in this section apply to businesses and public agencies that operate a facility used for the transfer of fuels from a stationary pumping station to vehicles or equipment in water. This type of fueling station includes aboveground or underground fuel storage facilities, which may be permanent or temporary. Fueling stations include facilities such as, but not limited to, commercial gasoline stations, port facilities, marinas, private fleet fueling stations, and boatyards.

Typically, stormwater contamination at fueling stations is caused by leaks or spills of fuels, lubrication oils, and fuel additives. These materials contain organic compounds, oil and greases, and metals that can be harmful to humans and aquatic life.

Most fuel dock spills are small and result from overfilling boat fuel tanks, burps from air vent lines, and drips from the pump nozzle as it is being returned to the pump.

Pollutant Control Approach: Provide employees with proper training and use spill control devices to prevent the discharge of pollutants in the receiving water or the drainage system.

Required BMPs for Fuel Docks

General

• Facilities and procedures for the loading or unloading of petroleum products must comply with U.S. Coast Guard requirements. Refer to specifications in Coast Guard Requirements for Marine Transfer of Petroleum Products.

Training and Fueling Dock Supervision

- Train staff on proper fueling procedures. Document training and maintain records.
- Have a trained employee supervise the fuel dock during fueling activities.
- Do not allow self-service on a marina dock without some means of controlling the dock activity. According to NFPA 30A: Code for Motor Fuel Dispensing Facilities and Repair Garages, each facility must have an attendant on duty to supervise, observe, and "control" the operation when open for business. This can be done via camera, intercom, and shutoff abilities in the office. However, this can lead to complacency and nothing can replace having an attendant on the dock to attend to emergencies when they occur.(NFPA, 2012)

Fueling Dock Setup, Maintenance, and Inspection

- Install a tank and leak detection monitoring system that shuts off the pump and fuel line when a leak is sensed.
- Install personal watercraft floats at fuel docks to stabilize personal watercraft/jet skis while refueling.
- Provide a spill containment equipment storage area where materials are easily accessible and clearly marked.
- Use automatic shut-off nozzles and promote the use of "whistles" and fuel/air separators on air vents or tank stems of inboard fuel tanks to reduce the amount of fuel spilled into receiving waters during fueling of boats.
- Post readable refueling directions, BMPs, and emergency protocols
- Always have a "Spills Aren't Slick" sign with emergency spill reporting numbers clearly visible. Marinas on land leased from the Washington Department of Natural Resources (DNR) are required to post these signs.
- Display "No Smoking" signs on fuel docks.
- Create a regular inspection, maintenance, and replacement schedule for fuel hoses, pipes, and tanks. Have staff walk the dock fuel lines from dispenser to tank to look for signs of leakage at joints and determine hose condition from end to end.

Fueling Practices

- Discourage operators from "topping off" (no more than 90% capacity). Fuel expands and can slosh out of the vent when temperatures rise or waters become choppy.
- When handing over the nozzle, wrap an absorbent pad around the nozzle end or plug inside the nozzle end to prevent fuel in the nozzle from spilling.
- Have the boat operator place an absorbent pad or suction cup bottle under the vent(s) to capture fuel spurts from the vent.
- Never block open the fuel nozzle trigger and always disable hands-free clips to ensure the boater remains with the nozzle to prevent overfilling. Hands-free clips are not allowed in Washington, per WAC 296-24-33015.
- Always keep the nozzle tip pointing up and hang the nozzle vertically when not in use.

- During fueling operations, visually monitor the liquid level indicator to prevent the tank from being overfilled.
- The maximum amount of product received must not exceed 95 percent capacity of the receiving tank.

Spill Cleanup

- See Activity A7.15 for Spills of Oil and Hazardous Substances
- Manage petroleum-containment booms, pads, and absorbents in a designated collection container and properly dispose of these materials (see Activity A4.7 for Storage of Liquid or Dangerous Waste Containers).
- Ensure customers do not use soaps in the event of a spill. Use oil absorbent booms or pads instead.

Required BMPs for Fueling by Portable Container

- Have boats fuel on shore or at a fuel dock rather than transport fuel from an upland facility to the boats. Only use hand-held fueling containers or "jerry cans" when necessary or when on shore or at dock fueling is not practical.
- Always refill portable fuel containers on the pavement or dock to ensure a good electrical ground. While the deck of the boat may seem stable, static electricity can build up and cause a spark.
- On the dock, put an absorbent pad under the container and wrap an absorbent pad around the fuel fill this can easily be done by putting a hole in the pad.
- Ensure the nozzle stays in contact with the tank opening.
- When transferring fuel from a portable can, use a fuel siphon with a shut-off feature. If a siphon is not available, a nozzle/spout with a shut off is a good alternative.
- Since fueling boats with a portable container can take time, make sure the container is comfortable to carry, hold, and balance.
- Use a high flow funnel. Funnels can help prevent spills by making a larger opening for fueling.
- Place a plug of absorbent pad or paper towel in the nozzle when not in use to capture any extra drops that accumulate.

- Fuel slowly and pour deliberately and watch the container (especially the nozzle mechanism) for signs of wear.
- Store portable fuel tanks out of direct sunlight and keep in a cool, dry place to minimize condensation.

Section A3

Production and Application Activities

A3.1 Concrete and Asphalt Mixing and Production at Stationary Sites

Description of Pollutant Sources: This activity applies to businesses and agencies that mix raw materials on-site to produce concrete or asphalt. It also applies to subsequent uses such as pouring concrete structures and making other concrete or asphalt products. Mobile concrete pouring and asphalt application are covered under **Activity A3.2** in this section. Requirements for stockpiling of raw materials are covered under **Activity A4.1 Storage or Transfer (Outside) of Solid Raw Materials, By-products or Finished Products.**

Pollutants of concern include toxic hydrocarbons, toxic organic compounds, oils and greases, heavy metals, and pH.

Pollutant Control Approach: Cover and contain processes where possible and prevent stormwater run-on and contamination, where feasible.

Any facility categorized under SIC Code 2951 (asphalt paving mixtures and blocks) or SIC Code 3273 (ready-mix concrete) may need to comply with Ecology's sand and gravel general permit. Contact Ecology at (360) 407-6400 for additional information.

Required BMPs

The following BMPs or equivalent measures are required of all businesses and public agencies active in concrete and asphalt mixing and production:

- Eliminate all illicit connections to the stormwater drainage system. See BMP S.1 in Chapter 5 for a detailed discussion on identifying and eliminating these connections.
- All process water from production, pouring, and equipment cleaning must be discharged to a dead-end sump, process water treatment system, or sanitary sewer (subject to approval by the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider if outside of the LOTT service area), or recycled. Never wash fresh concrete or concrete mixer washout into streets, stormwater drainage systems, streams, other water bodies, or to groundwater.
- A BMP maintenance schedule must be established and employees educated about the need to prevent stormwater contamination through the use and proper maintenance of BMPs.

Suggested BMPs

• The production and pouring area should be swept at the end of each workday to collect loose chunks of aggregate and raw materials for recycling or proper disposal. See BMP S.2 in Chapter 5 for disposal options.

- Sweep all driveways and gutters that show accumulation of materials to minimize the amount that could be carried off site by rain and enter the stormwater drainage system.
- Asphalt plants should use an oil/water separator to treat stormwater runoff. See Volume V of this manual, Runoff Treatment BMPs, for more information.
- Production and pouring areas shall be protected from stormwater run-on. See BMP S.7 in Chapter 5 for methods of run-on protection.
- Use absorbent materials in and around storm drains and catch basins to filter out contaminants. See Volume V of this manual, Runoff Treatment BMPs, for more information.
- Pave the mixing, production, and pouring areas. A sump drain in these areas is probably not advisable due to potential clogging problems, but could be used in a curing area. Sweep these areas to remove loose aggregate and recycle or dispose of properly.
- Use storm drain covers or similarly effective containment devices to prevent runoff from entering the stormwater drainage system. Accumulations of dirty runoff must be disposed of properly.

Contact the Thurston County Storm and Surface Water Utility at (360) 754-4681 for information about water quality treatment BMPs for these types of operations. Visit Ecology's Web site for accepted water quality treatment at: <<u>http://www.ecy.wa.gov/programs/wq/stormwater/index.html</u>>.

The use of any treatment BMP must not result in the violation of groundwater or surface water quality standards.

A3.2 Concrete Pouring, Concrete Cutting, and Asphalt Application at Temporary Sites

Description of Pollutant Sources: This activity applies to businesses and public agencies that apply asphalt or pour or cut concrete for building construction and remodeling, road construction, sidewalk, curb and gutter repairs and construction, sealing of driveways and roofs, and other applications. These activities are typically done on a temporary site-to-site basis where permanent BMP measures do not apply. Concrete pouring activities can severely alter the pH of receiving waters and slurry from aggregate washing can harden in storm pipes, reducing capacity and creating flooding problems. Concrete cutting uses water for cooling and the fine particulates suspended in the resulting slurry are particularly hard to treat.

Pollutants of concern include toxic hydrocarbons, toxic organic compounds, oils and greases, heavy metals, suspended solids, and pH.

Pollutant Control Approach: Train employees on proper procedures, sweep or shovel aggregate chunks, collect accumulated runoff and solids, and wash equipment in designated areas.

Required BMPs

The following BMPs or equivalent measures are required of all businesses and agencies doing concrete pouring and asphalt application at temporary sites:

- Employees must be educated on the pollution hazards of concrete and asphalt application and cutting.
- Loose aggregate chunks and dust must be swept or shoveled and collected (not hosed down a storm drain) for recycling or proper disposal at the end of each workday, especially at work sites such as streets, driveways, parking lots, sidewalks, curbs, and gutters where rain can readily pick up the loose material and carry it to the nearest stormwater conveyance. Small amounts of excess concrete, grout, and mortar can be disposed of in the trash.
- Storm drain covers or similarly effective containment devices must be placed over all nearby drains at the beginning of each day. Shovel or vacuum slurry and remove from the site. All accumulated runoff and solids must be collected and properly disposed of (see BMP S.2 in Chapter 5 for disposal options) at the end of each workday, or more often if necessary.
- Exposed aggregate washing (where the top layer of unhardened concrete is hosed or scraped off to leave a rough finish) must be done with a mechanism for containment and collection of the discarded concrete slurry.

• Cleaning of concrete application and mixing equipment or concrete vehicles must be done in a designated area where the rinse water is controlled and properly disposed. See Volume II, Section 3.1, BMP C154 for more information.

The use of any treatment BMP must not result in the violation of groundwater or surface water quality standards.

- Avoid the activity when rain is occurring or expected.
- If possible, portable asphalt mixing equipment should be covered by an awning, a lean-to, or another simple structure to avoid contact with rain. See BMP S.4 in Chapter 5 for further details on cover structures.
- Recycle broken concrete and asphalt.

A3.3 Manufacturing and Postprocessing of Metal Products

Description of Pollutant Sources: This activity applies to businesses such as mills, foundries, and fabricators that manufacture or postprocess metal products. A variety of activities such as machining, grinding, soldering, cutting, welding, quenching, etching, bending, coating, cooling, and rinsing may take place. These businesses may be required to obtain a NPDES permit from Ecology. See Chapter 7 for a discussion of NPDES requirements. Note: Painting, finishing and coating of metal products is covered under A3.7 Painting, Finishing, and Coating of Vehicles, Boats, Buildings, and Equipment.

Pollutants of concern include toxic organic compounds, heavy metals, oils and greases, pH, suspended solids, and chemical oxygen demand (COD).

Pollutant Control Approach: Cover and contain operations. Apply good housekeeping practices such as sweeping and preventative maintenance practices to prevent the contamination of stormwater. Avoid storing metals where they can be exposed to rain.

Required BMPs

The following BMPs or equivalent measures are required of all businesses engaged in metals manufacturing or post processing:

- Eliminate illicit connections to the stormwater drainage system. See BMP S.1 in Chapter 5 for detailed information on identifying and eliminating illicit connections.
- Process wastewater (including contact cooling water, filter backwash, cooling tower blow down, etc.) from processing and production, and stormwater runoff from activity areas, must discharge to a sanitary sewer, holding tank, or process treatment system. Such systems require an Ecology NPDES permit for discharge to surface water or storm drain. Contact the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider if outside the LOTT service area to obtain permits for discharge to the sewer. See BMP S.3 in Chapter 5 for detailed requirements.
- Employees must be educated in proper handling to control their work with metal products to minimize pollution.
- The activity area must be swept at the end of each workday to collect and dispose of metal fragments and product residues properly. See BMP S.2 in Chapter 5 for disposal alternatives. Do not allow metal fragments, residues, or dust to accumulate in areas exposed to stormwater.

Suggested BMPs

• Limit the amount of water used in quenching and rinsing. Recycle used water where possible.

- Cover the activity area to prevent rain from contacting the process and reduce the amount of runoff that has to be detained or treated. See BMP A3.9.
- Refer to the BMPs under sections A2 Transfer of Liquid or Solid Materials and A4 Storage and Stockpiling Activities, and utilize those BMPs which are applicable for materials storage and maintenance activities in your shop.

A3.4 Wood Treatment Areas

Description of Pollutant Sources: Wood treatment includes both anti-staining and wood preserving using pressure processes or by dipping or spraying. Wood preservatives include creosote, creosote/coal tar, pentachlorophenol, copper naphthenate, arsenic trioxide, malathion, or inorganic arsenicals such as chromated copper arsenate, acid copper chromate, chromate zinc chloride, and fluor-chrome-arsenate-phenol. Anti-staining chemical additives include iodo-prophenyl-butyl carbamate, dimethyl sulfoxide, didecyl dimethyl ammonium chloride, sodium azide, 8-quinolinol, copper (II) chelate, sodium ortho-phenylphenate, 2-(thiocyanomethylthio)-benzothiazole (TCMTB) and methylene bis- (thiocyanate), and zinc naphthenate.

Pollutant sources include drips of condensate or preservative after pressurized treatment, product washwater (in the treatment or storage areas), spills and leaks from process equipment and preservative tanks, fugitive emissions from vapors in the process, blowouts and emergency pressure releases, and kick-back from lumber (phenomenon where preservative leaks as it returns to normal pressure). Potential pollutants typically include the wood treating chemicals, BOD, suspended solids, oil and grease, benzene, toluene, ethylbenzene, phenol, chlorophenols, nitrophenols, heavy metals, and PAH, depending on the chemical additive used.

Pollutant Control Approach: Cover and contain all wood treating areas and prevent all leaching of and stormwater contamination by wood treating chemicals. Wood treating facilities may be covered by the Industrial Stormwater General Permit or by an individual permit. Individual permits covering wood treatment areas include applicable source control BMPs or require the development of BMPs or a SWPPP. Facilities covered under the Industrial Stormwater General Permit must prepare and implement a SWPPP. When developing a SWPPP or BMPs, wood treating facilities should include the applicable source control BMPs listed below.

- Use dedicated equipment for treatment activities to prevent the tracking of treatment chemicals to other areas on the site.
- Eliminate non-process traffic on the drip pad. Scrub down non-dedicated lift trucks on the drip pad.
- Immediately remove and properly dispose of soils with visible surface contamination (green soil) to prevent the spread of chemicals to groundwater and/or surface water via stormwater runoff.
- If incidental drippage is discovered in the storage yard, relocate the wood to a concrete chemical containment structure until it is drip free.
- Cover and/or enclose, and contain with impervious surfaces, all wood treatment areas. Slope and drain areas around dip tanks, spray booths, retorts, and any other process equipment in a manner that allows return of treatment chemicals to the wood treatment process.

- Cover storage areas for freshly treated wood to prevent contact of treated wood products with stormwater. Segregate clean stormwater from process water. Convey all process water to an approved treatment system.
- Seal any holes or cracks in the asphalt areas that are subject to wood treatment chemical contamination.
- Elevate stored, treated wood products to prevent contact with stormwater run-on and runoff.
- Place dipped lumber over the dip tank or on an inclined ramp for a minimum of 30 minutes to allow excess chemical to drip back to the dip tank.
- Place treated lumber from dip tanks or retorts in a covered paved storage area for at least 24 hours before placement in outside storage. Use a longer storage period during cold weather unless the temporary storage building is heated. Prior to moving wood outside, ensure that the wood is drip free and surface dry.

Suggested BMP

• Consider using preservative chemicals that do not adversely impact receiving surface water and groundwater.

A3.5 Commercial Composting

Description of Pollutant Sources: Commercial compost facilities operating outside without cover require large areas to decompose wastes and other feedstocks. Design these facilities to separate stormwater from leachate (i.e., industrial wastewater) to the greatest extent possible. When stormwater contacts any <u>active</u> composting areas, including waste receiving and processing areas, it becomes leachate. Pollutants in leachate include nutrients, biochemical oxygen demand (BOD), organics, coliform bacteria, acidic pH, color, and suspended solids. Stormwater at a compost facility consists of runoff from areas at the facility that are not associated with active processing and curing, such as product storage areas, vehicle maintenance areas, and access roads.

NPDES and State Solid Waste Permit Requirements: Composting facilities are regulated under WAC 173-350-220. Solid Waste Regulations require the collection and containment of all leachate produced from activities at commercial composting facilities. Composting facilities that propose to discharge to surface water, municipal sewer system, or groundwater must obtain the appropriate permits. Zero discharge is possible by containing all leachate from the facility (in tanks or ponds) for use early in the composting process or preventing production of leachate (by composting under a roof or in an enclosed building).

The Thurston County Public Health and Social Services Department regulates solid waste facilities in accordance with WAC 173-304. The Public Health & Social Services Department should be contacted at (360) 867-2664 to obtain permits and requirements for composting and recycling facilities.

Pollutant Control Approach: Consider zero leachate discharge.

Required BMPs

- See WAC 173-350-220, Composting Facilities
- See Siting and Operating Composting Facilities in Washington State: Good Management Practices (Ecology, 2013) for common sense actions that a facility can adopt to help run a successful program. This document is available at: https://fortress.wa.gov/ecv/publications/documents/1107005.pdf

https://fortress.wa.gov/ecy/publications/documents/1107005.pdf

- See Ecology's Organic Materials Management page for the most up-todate information: https://ecology.wa.gov/Waste-Toxics/Reducingrecycling-waste/Organic-materials.
- Contact other federal, state, and Thurston County agencies with environmental or zoning authority for applicable permit and regulatory information. The Thurston County Public Health and Social Services Department is responsible for issuing solid waste handling permits for commercial compost facilities.

- Apply for coverage under the Industrial Stormwater General Permit if the facility discharges stormwater to surface water or a municipal stormwater system. If all stormwater from the facility properly infiltrates to groundwater, the Industrial Stormwater General Permit is not required.
- There are some cases where an Individual State Waste discharge Permit is required. Check with the Ecology Southwest Regional Office and health department to discuss your permitting options.
- Screen incoming wastes for dangerous materials and solid waste. These materials may not be accepted for composting and must be properly disposed of per federal, state, and/or local requirements.
- Locate composting areas on impervious surfaces.
- Collect the leachate with a dike or berm, or with intercepting drains placed on the down slope side of the compost area.
- Convey all leachate from composting operations to a sanitary sewer, holding tank, or on-site treatment system. Leachate may not go to the storm drain or groundwater. Contact the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local service provider for permits and information.
- Direct outside runoff away from the composting areas.
- Cleanup debris from yard areas as needed to prevent stormwater contamination.

- Install catch basin inserts to collect excess sediment and debris if necessary. Inspect and maintain catch basin inserts to ensure they are working correctly.
- Locate stored residues in areas designed to collect leachate.
- Limit storage times of residues to prevent degradation and generation of leachate.

A3.6 Landscaping and Lawn/Vegetation Management

Description of Pollutant Sources: Landscaping can include grading, soil transfer, vegetation planting, and vegetation removal. Examples include weed control on golf course lawns, access roads, and utility corridors and during landscaping; and residential lawn/plant care. Proper management of vegetation can minimize excess nutrients and pesticides.

Pollutant Control Approach: Maintain appropriate vegetation to control erosion and discharge of stormwater pollutants. Prevent debris contamination of stormwater. Where practicable, grow plant species appropriate for the site, or adjust the soil properties of the site to grow desired plant species.

Required BMPs

- Install engineered soil/landscape systems to improve the infiltration and regulation of stormwater in landscaped areas.
- Select the right plants for the planting location based on proposed use, available maintenance, soil conditions, sun exposure, water availability, height, sight factors, and space available.
- Ensure that plants selected for planting are not on the noxious weed list. For example, butterfly bush often gets planted as an ornamental but is actually on the noxious weed list.

The Washington State Noxious Weed List can be found at the following webpage: <u>https://www.nwcb.wa.gov/printable-noxious-weed-list</u>

- Do not dispose of grass clippings and other collected vegetation into waterways or stormwater drainage systems.
- Do not blow vegetation or other debris into the drainage system.
- Dispose of collected vegetation such as grass clippings, leaves, sticks by composting or recycling.
- Remove, bag, and dispose of noxious weeds in the garbage immediately.
- Do not compost noxious weeds as it may lead to spreading through seed or fragment if the composting process is not hot enough.
- Use manual and/or mechanical methods of vegetation removal (pincertype weeding tools, flame weeders, or hot water weeders as appropriate) rather than applying herbicides, where practical.
- Use at least an eight-inch "topsoil" layer with at least 8 percent organic matter to provide a sufficient vegetation-growing medium.
 - Organic matter is the least water-soluble form of nutrients that can be added to the soil. Composed organic matter generally releases

only between 2 and 10 percent of its total nitrogen annually, and this release corresponds closely to the plant growth cycle. Return natural plant debris and mulch to the soil, to continue recycling nutrients indefinitely.

- Select the appropriate turfgrass mixture for the climate and soil type.
 - Certain tall fescues and rye grasses resist insect attack because the symbiotic endophytic fungi naturally in their tissues repel or kill common leaf and stem-eating lawn insects.
 - The fungus causes no known adverse effects to the host plant or to humans.
 - Tall fescues and rye grasses do not repel root-feeding lawn pests such as Crane Fly larvae.
 - Tall fescues and rye grasses are toxic to ruminants such as cattle and sheep.
 - Endophytic grasses are commercially available; use them in areas such as parks or golf courses where grazing does not occur.
 - Local agricultural or gardening resources such as Washington State University Extension office can offer advice on which types of grass are best suited to the area and soil type.
- Use the following seeding and planting BMPs, or equivalent BMPs, to obtain information on grass mixtures, temporary and permanent seeding procedures, maintenance of a recently planted area, and fertilizer application rates: BMP C120: Temporary and Permanent Seeding, BMP C121: Mulching, BMP C123: Plastic Covering, and BMP C124: Sodding.
- Adjusting the soil properties of the subject site can assist in selection of desired plant species. Consult a soil restoration specialist for site-specific conditions.

- Conduct mulch-mowing whenever practicable.
- Use native plants in landscaping. Native plants do not require extensive fertilizer or pesticide applications. Native plants may also require less watering.
- Use mulch or other erosion control measures on soils exposed for more than one week during the dry season (May 1 to September 30) or two days during the rainy season (October 1 to April 30).

- Till a topsoil mix or composted organic material into the soil to create a well-mixed transition layer that encourages deeper root systems and drought-resistant plants.
- Apply an annual topdressing application of 3/8" compost. Amending existing landscapes and turf systems by increasing the percent organic matter and depth of topsoil can:
 - Substantially improve the permeability of the soil.
 - Increase the disease and drought resistance of the vegetation.
 - Reduces the demand for fertilizers and pesticides.
- Disinfect gardening tools after pruning diseased plants to prevent the spread of disease.
- Prune trees in a manner appropriate for each species.
- If specific plants have a high mortality rate, assess the cause and replace with another more appropriate species.
- When working around and below mature trees, follow the most current American National Standards Institute (ANSI) ANSI A300 standards and International Society of Arboriculture BMPs to the extent practicable (e.g., take care to minimize any damage to tree roots and avoid compaction of soil).
- Monitor tree support systems (stakes, guys, etc.).
 - Repair and adjust as needed to provide support and prevent tree damage.
 - Remove tree supports after one growing season or maximum of 1 year.
 - Backfill stake holes after removal.
- When continued, regular pruning (more than one time during the growing season) is required to maintain visual sight lines for safety or clearance along a walk or drive, consider relocating the plant to a more appropriate location.
- Make reasonable attempts to remove and dispose of class C noxious weeds.
- Re-seed bare turf areas until the vegetation fully covers the ground surface.
- Watch for and respond to new occurrences of especially aggressive weeds such as Himalayan blackberry, Japanese knotweed, morning glory, English ivy, and reed canary grass to avoid invasions.

- Plant and protect tree per BMP LID.14: Tree Planting and Tree Retention.
- Aerate lawns regularly in areas of heavy use, where the soil tends to become compacted. Conduct aeration while the grasses in the lawn are growing most vigorously. Remove layers of thatch greater than 0.75 inches deep.
- Set the mowing height at the highest acceptable level and mow at times and intervals designed to minimize stress on the turf. Generally, mowing only one-third of the grass blade height will prevent stressing the turf.
 - Mowing is a stress-creating activity for turfgrass.
 - Grass decreases its productivity when mown too short and there is less growth of roots and rhizomes. The turf becomes less tolerant of environmental stresses, more disease prone, and more reliant on outside means such as pesticides, fertilizers, and irrigation to remain healthy.

A3.7 Painting, Finishing, and Coating of Vehicles, Boats, Buildings, and Equipment

Description of Pollutant Sources: Surface preparation and the application of paints, finishes, and/or coatings to vehicles, boats, buildings, and/or equipment outdoors can be sources of pollutants. Potential pollutants include organic compounds, oils and greases, heavy metals, and suspended solids.

Pollutant Control Approach: Cover and contain painting and sanding operations and apply good housekeeping and preventive maintenance practices to prevent the contamination of stormwater with painting over sprays and grit from sanding.

- Train employees in the careful application of paints, finishes, and coatings to reduce misuse and overspray. Use ground or drop cloths underneath outdoor painting, scraping, sandblasting work, and properly clean and temporarily store collected debris daily.
- Do not conduct spraying, blasting, or sanding activities over open water or where wind may blow paint or waste into water.
- Wipe up spills with rags and other absorbent materials immediately. Do not hose down the area to a storm drain, conveyance ditch, or to a receiving water.
- On dock areas, sweep rather than hose down debris. Collect any hose water generated and convey to appropriate treatment and disposal.
- Use an effective runoff control device if dust, grit, washwater, or other pollutants may escape the work area and enter a catch basin. The containment device(s) must be in place at the beginning of the workday. Collect contaminated runoff and solids and properly dispose of such wastes before removing the containment device(s) at the end of the workday.
- Use a ground cloth, pail, drum, drip pan, tarpaulin, or other protective device for activities such as outdoor paint mixing and tool cleaning or where spills can contaminate stormwater.
- Properly dispose of all wastes and prevent all uncontrolled releases to the air, ground, or water.
- Clean brushes and tools covered with non-water-based paints, finishes, or other materials in a manner that allows collection of used solvents, turpentine, or paint thinners for recycling or proper disposal.
- Store toxic materials under cover (tarpaulin, etc.) during precipitation events and when not in use to prevent contact with stormwater.

• Enclose or contain all work while using a spray gun or conducting sand blasting and in compliance with applicable Olympic Region Clean Air Agency (ORCAA), Occupational Safety and Health Administration (OSHA), and Washington Industrial Safety and Health Act (WISHA) requirements. Do not conduct outside spraying, grit blasting, or sanding activities during windy conditions that render containment ineffective.

- Recycle paint, paint thinner, solvents, pressure washwater, and any other recyclable materials.
- Use efficient spray equipment such as electrostatic, air-atomized, high volume/low pressure, or gravity feed spray equipment.
- Purchase recycled paints, paint thinner, solvents, and other products, if feasible.

A3.8 Commercial Printing Operations

Description of Pollutant Sources: Materials used in the printing process include inorganic and organic acids, resins, solvents, polyester film, developers, alcohol, vinyl lacquer, dyes, acetates, and polymers. Waste products may include waste inks and ink sludge, resins, photographic chemicals, solvents, acid and alkaline solutions, chlorides, chromium, zinc, lead, spent formaldehyde, silver, plasticizers, and used lubricating oils. With indoor printing operations, the only likely points of potential contact with stormwater are the outside temporary waste material storage area and area where chemicals are offloaded at external unloading bays. Pollutants can include total suspended solids, pH, heavy metals, oil and grease, and COD.

Pollutant Control Approach: Ensure appropriate disposal and NPDES permitting of process wastes. Cover and contain stored raw and waste materials.

- Discharge process wastewaters to a sanitary sewer (if approved by LOTT Alliance Industrial Pretreatment Program (360) 528-5708 or your local sewer service provider) or to an approved process wastewater treatment system.
- Do not discharge process wastes or wastewaters into storm drains or surface water.
- Determine whether any of these wastes qualify for regulation as dangerous wastes and dispose of them accordingly.
- Store raw materials or waste materials that could contaminate stormwater in covered and contained areas.
- Train all employees in pollution prevention, spill response, and environmentally acceptable materials handling procedures.
- Store materials in proper, appropriately labeled containers. Identify and label all chemical substances.
- Regularly inspect all stormwater management devices and maintain as necessary per DDECM standards.
- Try to use press washes without listed solvents, and with the lowest VOC content possible. Don't evaporate ink cleanup trays to the outside atmosphere.
- Place cleanup sludges into a container with a tight lid and dispose of as dangerous waste. Do not dispose of cleanup sludges in the garbage or in containers of soiled towels.

For additional information on pollution prevention the following Ecology recommends *Environmental Management and Pollution Prevention: A Guide for Lithographic Printers*, publication No. 94-139R.

A3.9 Manufacturing Operations (Outside)

Description of Pollutant Sources: Manufacturing pollutant sources include outside process areas, stack emissions, and areas where manufacturing activity has taken place in the past and significant pollutant materials remain.

Pollution Control Approach: Cover and contain outside manufacturing and prevent stormwater run-on and contamination, where feasible.

Required BMPs

- Sweep paved areas regularly, as needed, to prevent contamination of stormwater. Do not wash down areas into storm drains.
- Eliminate or minimize the contamination of stormwater by altering the activity.
- Enclose the activity (Figure IV 4.10). If possible, enclose the manufacturing activity in a building.

(Photo courtesy of Mark Dilley, Interstate Products, Inc.)

Figure IV - 4.10 Commercially Available Bermed Workspace.

- Cover the activity and connect floor drains to a sanitary sewer (Figure IV -4.11), if approved by LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider if outside of the LOTT service area. Berm or slope the floor as needed to prevent drainage of pollutants to outside areas.
- Isolate and segregate pollutants, as feasible. Convey the segregated pollutants to a sanitary sewer, process treatment, or dead-end sump, depending on available methods and applicable permit requirements.

(Photo courtesy of Seattle Public Utilities)

Figure IV - 4.11 Structure Used to Cover Manufacturing Operations.

A3.10 Agricultural Crop Production

This activity applies to farming of crops on a commercial scale. Crop farming practices can cause a large variety of pollution problems in receiving waters. Many of these practices can be altered without adversely affecting the farmers' ability to produce the same crops.

One of the most effective BMPs for stormwater pollution prevention the farmer can pursue is education. Contact the Thurston County Conservation District at (360) 754-3588. They will help develop a farm plan that covers all aspects of the farming operation, with particular care and attention to soil conservation and water resource protection. Conservation tillage and many other measures can help save money. The agencies also have access to grants to pay for conservation plantings and stream corridor fencing.

Pollutants of Concern: Toxic organic compounds, oils, heavy metals, nutrients, Oxygen demanding substances (i.e., BOD and COD), suspended solids (e.g., sediments), fecal bacteria.

Crop farms should implement agricultural practices proven to limit erosion. Several farming techniques aimed at reducing erosion have been proven successful. Individual farms should implement the combination of the following BMPs that best suits conditions present:

- Maintain ground cover. Cover bare areas with material such as mulch or green manure (cover crops) during times when land is not in production.
- Practice conservation tillage. Implement tillage or planting systems in which at least 30 percent of the soil surface is covered by plant residue after planting.
- Practice conservation cover. Establish and maintain perennial vegetation cover to protect soil and water resources on land retired from agricultural production.
- Utilize contour farming. Plow, prepare, plant and cultivate land on contours perpendicular to the slope of the land in a terrace-like fashion, so that runoff cannot proceed directly along a row but rather is impeded by rows in its path, thus allowing for more infiltration and hindering erosion.
- Plant critical areas. Plant vegetation such as trees, shrubs, vines, grasses, and legumes on highly erodible or critical areas to stabilize the soil.
- Plant and maintain vegetated buffers and filter strips. Maintain a strip of permanent vegetation downslope of crop fields so that sediments and associated pollutants in surface water runoff can be filtered out. These filter strips are especially important along stream banks, shorelines, and

drainage ditches. Contact the Thurston County Conservation District at (360) 754-3588 and the Natural Resources Conservation Service at (360) 704-7740 for more information. In some instances, these organizations may be able to provide plant materials for such work free or for a low cost.

• Practice conservation irrigation. Replace flood irrigation systems with sprinkler head or drip irrigation systems that use less water. These irrigation methods reduce the amount of crop field runoff and thereby reduce erosion and pollutant transport.

Some other suggested BMPs to consider for your farm include the following:

- Use an IPM plan and reduce reliance on pesticides. Information on integrated pest management is available from the Washington State University/Thurston County Cooperative Extension Service. BMP S.8 in Chapter 5 provides some details on integrated pest management and in Appendix IV-B for an example. See Activity 3.6 for information on BMPs for pesticide and fertilizer use.
- If possible, fertilized crops should be planted as far as possible from surface drainages. This will help keep nutrients out of water bodies.
- Contact the Natural Resources Conservation Service (formerly the Soil Conservation Service) at (360) 704-7740 for information on developing specific fertilization schedules. Applying fertilizers at the right time and in the right quantity can help minimize pollution.
- If possible, crop cultivation should be avoided on steep slopes.

A3.11 Pesticides and an Integrated Pest Management Program

Description of Pollutant Sources: Pesticides include herbicides, rodenticides, insecticides, fungicides, etc. Examples of pesticide use include:

- Weed control on golf course lawns, access roads, utility corridors and landscaping.
- Sap stain and insect control on lumber and logs.
- Rooftop moss removal.
- Killing nuisance rodents.
- Fungicide application to patio decks.

Pollutant Control Approach: Control of pesticide applications to prevent contamination of stormwater. Develop and implement an Integrated Pest Management (IPM) Plan and use pesticides only as a last resort. Carefully apply pesticides/herbicides in accordance with label requirements.

- Do not apply pesticides in quantities that exceed the limits on the product the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA label. Avoid excessive application of chemical.
- Follow the manufacturers' guidelines and label requirements carefully.
- Conduct spray applications during weather conditions as specified in the label requirements and applicable local and state regulations. Never apply pesticides, herbicides, fungicides or rodenticides when rain is expected, or during rain events (unless the label directs such timing).
- Clean up any spilled pesticides immediately. Do not hose down to a storm drain, conveyance ditch, or water body.
- Remove weeds/vegetation in stormwater ditches, stormwater facilities, and drainage systems by hand or other mechanical means and only use pesticides as a last resort.
- Flag all sensitive areas including wells, creeks, and wetlands prior to spraying.
- Post notices and delineate the spray areas prior to the application, as required by Thurston County, or by Ecology.
- Refer to A3.6 Landscaping and Lawn/Vegetation Management and use pesticides only as a last resort.

- Conduct any pest control activity at the life stage when the pest is most vulnerable. For example, if it is necessary to use a Bacillus thuringiens application to control tent caterpillars, apply it to the material before the caterpillars cocoon or it will be ineffective. Any method used should be site-specific and not used wholesale over a wide area.
- Train eemployees on proper application of pesticides and disposal practices.
- Mix pesticides and clean the application equipment under cover in an area where accidental spills will not enter surface or groundwaters, and will not contaminate the soil.
- The pesticide application equipment must be capable of immediate shutoff in the event of an emergency.
- Implement a pesticide-use plan and include at a minimum:
 - A list of selected pesticides and their specific uses.
 - Brands and formulations of the pesticide.
 - Application methods and quantities to be used.
 - Safety, storage, and disposal methods.
 - Monitoring, record keeping, and public notices procedures. All procedures shall conform to the requirements of Chapter 17.21 RCW and Chapter 16-228 WAC.

Develop and implement an Integrated Pest Management (IPM) program if pests are present. The following steps are adapted from (Daar, 1992)

- **Step One:** Correctly identify problem pests and understand their life cycle.
 - Learn more about the pest.
 - Observe it and pay attention to any damage that may be occurring.
 - Learn about the life cycle.
 - Many pests are only a problem during certain seasons, or can only be treated effectively in certain phases of the life cycle.
- **Step Two:** Establish tolerance thresholds for pests.
 - Decide on the level of infestation that must be exceeded before treatment needs to be considered. Pest populations under this threshold should be monitored but don't need treatment.

- **Step Three:** Monitor to detect and prevent pest problems.
 - Monitor regularly to anticipate and prevent major pest outbreaks.
 - Conduct a visual evaluation of the lawn or landscape's condition. Take a few minutes before mowing to walk around and look for problems.
 - Keep a notebook, record when and where a problem occurs, then monitor for it at about the same time in future years.
 - Specific monitoring techniques can be used in the appropriate season for some potential problem pests, such as European crane fly.
- **Step Four:** Modify the maintenance program to promote healthy plants and discourage pests.
 - Review your landscape maintenance practices to see if they can be modified to prevent or reduce the problem.
 - A healthy landscape is resistant to most pest problems. Law aeration and overseeding along with proper mowing height, fertilization, and irrigation will help the grass out-compete the weeds.
 - Correcting drainage problems and letting soil dry out between watering in the summer may reduce the number of crane fly larvae that survive.
- **Step Five:** If pests exceed the tolerance thresholds:
 - Consider the most effective management options with reducing impacts to the environment. This may mean chemical pesticides are the best option in some circumstances.
 - Consider the use of physical, mechanical, or biological controls.
 - Study to determine what products are available and choose a product that is the least toxic and has the least non-target impact.
- Step Six: Evaluate and record the effectiveness of the control, and modify maintenance practices to support lawn or landscape recovery and prevent recurrence.
 - Keep records!
 - Note when, where, and what symptoms occurred, or when monitoring revealed a potential pest problem.

- Note what controls were applied and when, and the effectiveness of the control.
- Monitor next year for the same problem.

- Choose the least toxic pesticide available that is capable of reducing the infestation to acceptable levels. The pesticide should readily degrade in the environment and/or have properties that strongly bind it to the soil.
- Choose pesticides categorized by EPA as reduced risk. For example, the herbicide imazamox.
- When possible, apply pesticides during the dry season sot that the pesticide residue is degraded prior to the next rain event.
- If possible, do not spray pesticides within 100 feet of water bodies. Spraying pesticides within 100 feet of water bodies including any drainage ditch or channel that leads to open water may have additional regulatory requirements beyond just following the pesticide product label. Additional requirements may include:
 - Obtaining a discharge permit from Ecology.
 - Obtaining a permit from Thurston County.
 - Using an aquatic labeled pesticide and adjuvant.
- Use manual pest control measures, such as scraping or using highpressure sprayers to remove moss from roofs and decks, before resorting to chemicals. Rodent traps can also be highly effective, without endangering pets and children as chemical baits can.
- Consider alternative to the use of pesticides such as covering or harvesting weeds, substitute vegetative growth, and manual weed control/moss removal.
- Consider the use of soil amendments, such as compost, that are known to control some common diseases in plants, such as Pythium root rot, ashy stem blight, and parasitic nematodes.
- Once a pesticide is applied, evaluate its effectiveness for possible improvement. Records should be kept showing the effectiveness of the pesticides applied.
- Follow the FIFRA label requirements for disposal. If the FIFRA label does not have disposal requirements the rinseate from equipment cleaning

and/or triple-rinsing of pesticide containers should be used as product or recycled into product.

- Develop an adaptive management plan and annual evaluation procedure including: (adapted from (Daar, 1992))
 - A review of the effectiveness of pesticide applications.
 - Impact on buffers and sensitive areas, including potable wells. If individual or public potable wells are located in the proximity of commercial pesticide applications, contact the regional Ecology hydrogeologist to determine if additional pesticide application control measures are necessary.
 - Public concerns.
 - Recent toxicological information on pesticides use/proposed for use.

For more information, refer to the Pesticide Information Center Online (PICOL) Database at <u>https://picol.cahnrs.wsu.edu/.</u>

For more information on Thurston County's IPM policy, visit the County web site at: <u>https://www.co.thurston.wa.us/health/ehipm/index.html</u>.

Washington pesticide law requires most businesses that commercially apply pesticides to property of another to be licensed as a Commercial Applicator form the Washington State Department of Agriculture.

A3.12 Nurseries and Greenhouses

Description of Pollutant Sources: These BMPs are for use by commercial container plant, greenhouse grown, and cut foliage production operations. Common practices at nurseries and greenhouses can cause elevated levels of phosphorus, nitrogen, sediment, bacteria, and organic material which can contribute to the degradation of water quality.

Pollutant Control Approach: Minimize the pollutants that leave the site by controlling the placement of materials, stabilizing the site, and managing irrigation water.

- Establish nursery composting areas, soil storage, and mixing areas at least 100 feet away from any stream or other surface water body and as far away as possible from drainage systems.
- Do not dispose of collected vegetation or other debris into the drainage system.
- Do not blow, sweep, or otherwise allow vegetation or other debris into the drainage system.
- Regularly cleanup spilled potting soil to prevent its movement, especially if fertilizers and pesticides are incorporated. (Haver, 2014)
- Use soil mixing and layering techniques with composted organic material to reduce herbicide use and watering.
- Utilize soil incorporated with fertilizers and/or pesticides immediately; do not store for extended periods. (Haver, 2014)
- Cover soil storage and compost storage piles. Refer to Activity A4.1 for Storage or Transfer of Solid Raw Materials, Byproducts, or Finished Products.
- Dispose of pathogen-laced potting substrate and diseased plants appropriately.
- Place plants on gravel, geotextile, or weed cloth to allow infiltration and minimize erosion, including inside greenhouse structures. (Haver, 2014)
- Properly reuse, recycle, or dispose of used polyfilm, containers, and other plastic-based products so that they do not collect stormwater. (FDACS, 2014)
- Evaluate and manage irrigation to reduce runoff, sediment transport, and erosion:
 - Place irrigation inputs to keep moisture primarily in the plant's root zone. This will significantly reduce nutrient related impacts from fertilizers. (FDACS, 2014)
 - Avoid over-irrigating. This may exceed the soil's water-holding capacity and lead to runoff or leaching. (FDACS, 2014)
 - Consider and adjust as needed the uniformity of application, the amount of water retained within the potting substrate, and the

amount of water that enters containers compared to that which exits the containers and/or falls between containers. (FDACS, 2014)

- Consolidate containers and turn off irrigation in areas not in production. This may require individual on/off valves at each sprinkler head. (Haver, 2014)
- Based on the stage of plant growth, space containers and flats as close as possible to minimize the amount of irrigation water that falls between containers. (FDACS, 2014)
- Group plants of similar irrigation needs together.
- Consider minimizing water losses by using cyclic irrigation (multiple applications of small amounts). (FDACS, 2014)
- Consider using sub-irrigation systems (e.g., capillary mat, ebb-andflow benches, and trays or benches with liners); these systems can conserve water and reduce nutrient loss, particularly when nutrients are supplied in irrigation water that is reused. (FDACS, 2014)
- Refer to A3.13 Irrigation for additional BMP considerations.
- Refer to A3.14 Fertilizer Application and A3.11 Pesticides and an Integrated Pest management Program.
- Use windbreaks or other means (e.g., pot in pot) to minimize plant blow over. (FDACS, 2014)
- Cover potting areas with a permanent structure to minimize movement of loose soil. Use a temporary structure if a permanent structure is not feasible. (Haver, 2014)
- Control runoff from central potting locations that have a watering station used to irrigate plants immediately after potting. Either:
 - o Collect runoff in a small basin and reuse the runoff.
 - Or, route runoff through an on-site vegetative treatment area.
 - Or, use a graveled area and allow runoff to infiltrate.
- Surround soil storage and compost storage areas with a berm or wattles.
- Utilize a synthetic (geotextile) groundcover material to stabilize disturbed areas and prevent erosion in areas where vegetative cover is not an option. (FDACS, 2014)

- In areas with a large amount of foot traffic, use appropriate aggregate such as rock and gravel for stabilization. (FDACS, 2014)
- Store potting substrate that contains fertilizer in a dedicated area with an impermeable base. If the storage area is not under a roof to protect it from rainfall, manage runoff by directing it to a stormwater treatment area. (FDACS, 2014)

A3.13 Irrigation

Description of Pollutant Sources: Irrigation consists of discharges from irrigation water lines, landscape irrigation, and lawn or garden watering. Excessive watering can lead to discharges of chlorinated potable water runoff into drainage systems; it can also cause erosion; and negatively affect plant health. Improper irrigation can encourage pest problems, leach nutrients, and make a lawn completely dependent on artificial watering. Mosquito breeding habitats may form through excessive watering.

Pollutant Control Approach: Limit the amount and location of watering to prevent runoff and discharges to drainage systems.

- Irrigate with the minimum amount of water needed. Never water at rates that exceed the infiltration rate of the soil.
- Maintain all irrigation systems so that irrigation water is applied evenly and where it is needed.
- Ensure sprinkler systems do not overspray vegetated areas resulting in excess water discharging into the drainage system.
- Inspect irrigated areas for excess watering. Adjust watering times and schedules to ensure that the appropriate amount of water is being used to minimize runoff. Consider factors such as soil structure, grade, time of year, and type of plant material in determining the proper amounts of water for a specific area.
- Inspect irrigated areas regularly for signs of erosion and/or discharge.
- Place sprinkler systems appropriately so that water is not being sprayed on impervious surfaces instead of vegetation.
- Repair broken or leaking sprinkler nozzles as soon as possible.
- Appropriately irrigate lawns based on the species planted, the available water holding capacity of the soil, and the efficiency of the irrigation system.

- The depth from which a plant normally extracts water depends on the rooting depth of the plant. Appropriately irrigated lawn grasses normally root in the top 6 to 12 inches of soil; lawns irrigated on a daily basis often root only in the top 1 inch of soil.
- Do not irrigate plants during or immediately after fertilizer application. The longer the period between fertilizer application and irrigation, the less fertilizer runoff occurs.
- Do not irrigate plants during or immediately after pesticide application (unless the pesticide label directs such timing).
- Reduce frequency and/or intensity of watering as appropriate for the wet season (October 1 to April 30).
- Place irrigation systems to ensure that plants receive water where they need it. For example, do not place irrigation systems downgradient of plant's root zones on hillsides.

- Add a tree bag or slow-release watering device (e.g., bucket with a perforated bottom) for watering newly installed trees when irrigation system is not present.
- Water deeply, but infrequently, so that the top 6 to 12 inches of the root zone is moist.
- Use soaker hoses or spot water with a shower type wand when an irrigation system is not present.
 - Pulse water to enhance soil absorption, when feasible.
 - Pre-moisten soil to break surface tension of dry or hydrophobic soils/mulch, followed by several more passes. With this method, each pass increases soil absorption and allows more water to infiltrate prior to runoff.
- Identify trigger mechanisms for drought-stress (e.g., leaf wilt, leaf senescence, etc.) of different species and water immediately after initial signs of stress appear.
- Water during drought conditions or more often if necessary to maintain plant cover.
- Adjust irrigation frequency/intensity as appropriate after plant establishment.
- Annually inspect irrigation systems to ensure:

- That there are no blockages of sprayer nozzles.
- Sprayer nozzles are rotating as appropriate.
- Sprayer systems are still aligned with the plant locations and root zones.
- Consult with the Thurston County Conservation District, or the Washington State University Thurston County Extension to help determine optimum irrigation practices.
- Do not use chemigation and fertigation in irrigation systems. This will help avoid over application of pesticides and fertilizers.

A3.14 Fertilizer Application

Description of Pollutant Source: Poor application of fertilizer can cause appreciable stormwater contamination. Fertilizers can leach phosphorous, nitrogen, and coliform bacteria. Fertilizers can contribute to algae blooms, increase nutrient concentrations, and deplete oxygen in receiving waters.

Pollutant Control Approach: Minimize the amount of fertilizer necessary to maintain vegetation. Control the application of fertilizer to prevent the discharge of stormwater pollution.

- Apply the minimum amount of slow-release fertilizer necessary to achieve successful plant establishment.
- Do not fertilize when the soil is dry or during a drought.
- Never apply fertilizers if it is raining or about to rain.
- Do not apply fertilizers within three days prior to predicted rainfall. The longer the period between fertilizer application and either rainfall or irrigation, the less fertilizer runoff occurs.
- Determine the proper fertilizer application for the types of soil and vegetation involved.
- Follow manufacturers' recommendations and label directions.
- Train employees on the proper use and application of fertilizers.
- Keep fertilizer granules off impervious surfaces. Clean up spills immediately. Do not hose down to a storm drain, conveyance ditch, or water body.

- If possible, do not fertilize areas within 100 feet of water bodies including wetlands, ponds, and streams.
- Avoid fertilizer applications in stormwater ditches, stormwater facilities, and drainage systems.
- In areas that drain to sensitive water bodies, apply no fertilizer at commercial and industrial facilities, to grass swales, filter strips, or buffer areas unless approved by Thurston County.
- Use slow release fertilizers such as methylene urea, isobutylidene, or resin coated fertilizers when appropriate, generally in the spring. Use of slow release fertilizers is especially important in areas with sandy or gravelly soils.
- Apply fertilizers in amounts appropriate for the target vegetation and at the time of year that minimizes losses to surface and groundwater.
- Time the fertilizer application to periods of maximum plant uptake. Ecology generally recommends application in the fall and spring, although Washington State University turf specialists recommend four fertilizer applications per year.
- Do not use turf fertilizers containing phosphorous unless a soil sample analysis taken within the past 36 months indicates the soil of the established lawn is deficient in phosphorus. For more information about restrictions on turf fertilizers containing phosphorus, see the following website:

https://agr.wa.gov/departments/pesticides-and-fertilizers/fertilizers/fertilizerscontaining-phosphorus

Suggested BMPs

Test soils to determine the correct fertilizer application rates.

- Evaluation of soil nutrient levels through regular testing ensures the best possible efficiency and economy of fertilization.
- Fertilization needs vary by site depending on plant, soil, and climatic conditions.
- Choose organic fertilizers when possible.
- For details on soils testing, contact the Thurston County Conservation District, a soils testing professional, or the Washington State University Thurston County Extension.

Section A4

Storage and Stockpiling Activities

A4.1 Storage or Transfer (Outside) of Solid Raw Materials, Byproducts, or Finished Products

Description of Pollutant Sources: Some pollutant sources such as solid raw materials, by-products, or products such as gravel, sand, salts, topsoil, compost, logs, sawdust, wood chips, lumber and other building materials, concrete, and metal products are often stored outside in large piles or stacks at commercial or industrial establishments. Contact between bbulk materials stored outside may leach or erode when contacted by stormwater. Contaminants include total suspended solids, BOD, COD, organics, and dissolved metals or salts (sodium, calcium, magnesium chloride, etc.).

Pollutant Control Approach: Provide impervious containment with berms, dikes, etc. and/or cover to prevent run-on and discharge of leachate pollutant(s) and total suspended solids.

- Do not hose down the contained stockpile area to a storm drain or a conveyance to a storm drain or receiving water.
- Maintain drainage areas in and around storage of solid materials with a minimum slope of 1.5 percent to prevent pooling and minimize leachate formation. Areas should be sloped to drain stormwater to the perimeter for collection or to internal drainage "alleyways" where no stockpiled material exists.
- Sweep paved storage areas regularly for collection and disposal of loose solid materials.
- If and when feasible, collect and recycle water-soluble materials (leachates).
- Stock cleanup materials such as brooms, dustpans, and vacuum sweepers near the storage area.
- The source control BMP options listed below are applicable for stockpiles greater than 5 cubic yards of erodible or water soluble materials such as soil, road de-icing salts, compost, unwashed sand and gravel, or sawdust. Also included are outside storage areas for solid materials such as logs, bark, lumber, and metal products. Choose one or more of the following Source Controls:
 - Store in a building or paved and bermed covered area as shown in Figure IV - 4.12;
 - Place temporary plastic sheeting (polyethylene, polypropylene, hypalon, or equivalent) over the material (Figure IV 4.13); or

- Pave the area and install a stormwater drainage system. Place curbs or berms along the perimeter of the area to prevent the runon of uncontaminated stormwater and to collect and convey runoff to treatment. Slope the paved area in a manner that minimizes the contact between stormwater (e.g., pooling) and leachable materials in compost, logs, bark, wood chips, or other materials.
- For large stockpiles that cannot be covered, implement containment practices at the perimeter of the site and at any catch basins as needed to prevent erosion and discharge of the stockpiled material off-site or to a storm drain. Ensure that contaminated stormwater is not discharged directly to surface waters without being conveyed through an appropriate treatment BMP.
- Convey contaminated stormwater from the stockpile area to a wet pond, wet vault, presettling basin, manufactured treatment device, or other appropriate treatment system, depending on the contamination.

Figure IV - 4.12 Covered and Secured Storage Area for Bulk Solids.

Figure IV - 4.13 Temporary Plastic Sheeting Covering Raw Materials Stored Outdoors.

A4.2 Storage and Treatment of Contaminated Soils

Description of Pollutant Sources: This activity applies to businesses and agencies that store and treat soils contaminated with toxic organic compounds, petroleum products, or heavy metals. Such contamination typically comes to light when an environmental audit is done or old underground tanks are removed. The soils are usually excavated and taken off site for treatment via aeration and perhaps chemical stabilization. Stormwater runoff that comes in contact with contaminated soil can carry those contaminants along with loose dirt into receiving waters.

Pollutants of concern include toxic organic compounds, oils and greases, and heavy metals.

Pollutant Control Approach: The Thurston County Public Health and Social Services Department at (360) 867-2664 regulates and permits businesses treating contaminated soil. In addition, a permit from ORCAA is required if the treatment method for removing soil contaminants involves forcing air through, or extracting air from, the soil. Contact these agencies for additional information regarding the appropriate pollutant control approach.

The use of any treatment BMP must not result in the violation of groundwater or surface water quality standards.

A4.3 Temporary Fruit Storage

Description of Pollutant Sources: This activity applies to businesses that temporarily store fruits and vegetables outdoors prior to or after packing, processing, or sale, or that crush, cut, or shred fruits or vegetables for wines, frozen juices, and other food and beverage products.

Activities involving the storage or processing of fruits, vegetables, and grains can potentially result in the delivery of pollutants to stormwater. Potential pollutants of concern from all fruit and vegetable storage and processing activities include nutrients, suspended solids, substances that increase biological oxygen demand, and color. These pollutants must not be discharged to the drainage system or directly into receiving waters.

Pollutant Control Approach: Store and process fruits and vegetables indoors or under cover whenever possible. Educate employees about proper procedures. Cover and contain operations and apply good housekeeping and preventive maintenance practices to prevent the contamination of stormwater.

- Employees must be educated on benefits of keeping the storage area clean.
- Keep fruits, vegetables, and grains stored outside for longer than a day in plastic bins or in bins lined with plastic. The edge of the plastic liner should be higher than the amount of fruit stored or should drape over the side of the bin.
- Dispose of rotten fruit, vegetables, and grains in a timely manner (typically, within a week).
- Make sure all outside materials that have the potential to leach or spill to the drainage system are covered, contained, or moved to an indoor location. For fruits, vegetables, and grains stored outside for a week or more, cover with a tarp or other waterproof material. Make sure coverings are secured from wind.
- No untreated water used to clean produce can enter the stormwater drainage system. Minimize the use of water when cleaning produce to avoid excess runoff.
- Cleanup materials, such as brooms and dustpans, must be kept near the storage area.
- The processing area must be swept or shoveled daily to collect dirt and fruit and vegetable fragments for proper disposal.

- If a holding tank is used for the storage of wastewater, pump out the contents before the tank is full and dispose of wastewater to a sanitary sewer or approved wastewater treatment system.
- The processing area must be enclosed in a building or shed, or covered with provisions for stormwater run-on prevention. Alternatively, pave and slope the area to drain to the sanitary sewer, holding tank, or process treatment system collection drain.

- Cover storage areas for fruits and vegetables.
- A containment curb, dike, or berm can be used to prevent off-site runoff from storage or processing areas and also to prevent stormwater run-on.

A4.4 Storage of Solid Wastes and Food Wastes

Description of Pollutant Sources: This activity applies to businesses and public agencies that store solid wastes and food wastes outdoors. This includes ordinary garbage. If improperly stored, these wastes can contribute a variety of different pollutants to stormwater. Requirements for handling and storing solid waste may include a permit from the Thurston County Public Health and Social Services Department. For more information, call the Waste Management Section at (360) 867-2664

NOTE: Dangerous solid wastes must be stored and handled under special guidelines. Businesses and agencies that store dangerous wastes must follow specific regulations outlined by Ecology and, in some cases, the county health department. Ecology regulations are outlined in Chapter 7. Please contact Ecology at (360) 407-6300 and the Thurston County Public Health and Social Services Department at (360) 867-2664 for the specific requirements and permitting information.

Pollutants of concern include toxic organic compounds, oils and greases, heavy metals, nutrients, suspended solids, and oxygen demanding substances (i.e., BOD and COD).

Pollutant Control Approach: Store wastes in suitable containers with leak-proof lids. Sweep or shovel loose solids. Educate employees about the need to check for and replace leaking containers.

Required BMPs

The following BMPs are required of all businesses and public agencies engaged in storage of non-dangerous solid wastes or food wastes:

- All solid and food wastes must be stored in suitable containers. Piling of wastes without any cover is not acceptable.
- Storage containers must be checked for leaks and replaced if they are leaking, corroded, or otherwise deteriorating.
- Storage containers must have leak-proof lids or be covered by some other means (Figure IV 4.14). Lids must be kept closed at all times. This is especially important for dumpsters, as birds can pick out garbage and drop it, promoting rodent, health, and stormwater problems.

OR

• If lids cannot be provided for the waste containers, or they cannot otherwise be covered, there is another option: a designated waste storage area must be provided with a containment berm, dike, or curb, and the designated area must drain to a sanitary sewer (contact LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider prior to any connections) or holding tank for further treatment. See BMP S.7 and S.3 in Chapter 5 for more information.

Figure IV - 4.14 Solid Waste Dumpsters with Properly Sealed Lids.

- Employees must be trained to frequently check storage containers for leaks and to ensure that the lids are on tightly.
- The waste storage area must be swept or otherwise cleaned frequently to collect all loose solids for proper disposal in a storage container. Do not hose the area to collect or clean solids.
- If you clean your containers, all rinse water from cleaning must be disposed of in a sanitary sewer or septic system.
- Clean out catch basins on your property that receive drainage from your waste storage area. See BMP S.9 in Chapter 5 for details on catch basin cleaning.

- If the amount of waste accumulated appears to frequently exceed the capacity of the storage container, then another storage container should be obtained and utilized.
- Store containers such that wind will not be able to knock them over.
- Designate a storage area, pave the area, and slope the drainage to a holding tank to prevent stormwater run-on or run-off. If a holding tank is used, the contents must be pumped out before the tank is full and properly disposed of. See BMP S.2 in Chapter 5 for more information on disposal options.
- Compost appropriate wastes. Contact Thurston County Solid Waste at (360) 867-2300 for more information on composting.

• Recycle your solid wastes. The Industrial Materials Exchange program facilitates the transfer of excess materials and wastes to those who can use them. Industrial Materials Exchange can be reached at (206) 296-4899, toll free 1-888-TRY-IMEX or on the Web at: <u>http://www.hazwastehelp.org/imex/</u>.

A4.5 Recyclers and Scrap Yards

Description of Pollutant Sources: Includes businesses and public agencies that reclaim various materials for resale or for scrap, such as vehicles and vehicle/equipment parts, construction materials, metals, papers, and beverage containers.

Potential sources of pollutants include paper, plastic, metal scrap debris, engines, transmissions, radiators, batteries, and other contaminated materials or that contain fluids. Other pollutant sources include leachate from metal components, contaminated soil, and the erosion of soil. Activities that can generate pollutants include the transfer, dismantling, and crushing of vehicles and scrap metal; the transfer and removal of fluids; maintenance and cleaning of vehicles, parts, and equipment; and storage of fluids, parts for resale, solid wastes, scrap parts, and materials, equipment and vehicles that contain fluids, generally in uncovered areas.

Potential pollutants typically found vehicle recycle and scrap yards include, polychlorinated biphenyls (PCBs), heavy metals, oils and greases, total suspended solids, BOD, ethylene and propylene glycol, and acidic pH.

- For facilities subject to Ecology's industrial stormwater general permit refer to Ecology Document No. 94-146, Vehicle and Metal Recyclers: A Guide for Implementing the Industrial Stormwater General National Pollutant Discharge Elimination System (NPDES) Permit Requirements. Apply the BMPs in that guidance document to scrap material recycling facilities depending on the pollutant sources existing at those facilities.
- Check incoming scrap materials, vehicles, and equipment for potential fluid contents and batteries.
- Drain and transfer fluids from vehicles and other equipment only in a designated area with a waste collection system or over drip pans.
- Remove batteries and store on the ground in a leak-proof container and under cover.
- Cover and raise any materials that may contaminate stormwater. A tarp and pallet are acceptable.
- Cover and contain any stockpiles of any material that has the potential to contaminate stormwater runoff.
- All containers used to store fluids must comply with federal, state, and/or local secondary containment requirements. Storage of flammable and combustible materials must comply with the appropriate fire codes.

Required Routine Maintenance

- Inspect storage areas regularly and promptly clean up any leaks, spills, or contamination.
- Sweep scrap storage areas as needed. Do not hose down anything to a storm drain.
- Keep spill cleanup materials in a location known to all. Ensure that employees are familiar with the site's spill control plan and/or proper spill cleanup procedures.

- Install catch basin inserts to collect excess sediment and debris if necessary. Inspect and maintain catch basin inserts to ensure they are working correctly.
- Conduct automobile/vehicle metal-shredding inside enclosed building with HEPA air filtration systems to prevent the fugitive release of heavy metals and other potentially hazardous materials into the air.

A4.6 Treatment, Storage, or Disposal of Dangerous Wastes

This activity applies to businesses and public agencies that are permitted by Ecology to treat, store, or dispose of dangerous wastes. Ecology regulates these facilities with specific requirements, which include the need for a NPDES permit. Detailed BMPs are not included in this volume since site requirements for these facilities are well beyond the level of typical BMP applications. See Chapter 7 for reference information.

The Thurston County Public Health and Social Services Department also administers some aspects of dangerous waste treatment, storage, and disposal. Call (360) 867-2664 for more information.

A4.7 Storage of Liquid or Dangerous Waste Containers

Description of Pollutant Sources: Steel and plastic drums with volumetric capacities of 55 gallons or less are typically used at industrial facilities for container storage of liquids and powders. The BMPs specified below apply to container(s) located outside a building. Use these BMPs when temporarily storing accumulated food wastes, vegetable or animal grease, used oil, liquid feedstock or cleaning chemicals, or Dangerous Wastes (liquid or solid), unless the business is permitted by Ecology to store the wastes. Leaks and spills of pollutant materials during handling and storage are the primary sources of pollutants. Oil and grease, acid/alkali pH, oxygen demanding substances, (i.e., BOD and COD) are potential pollutant constituents.

Pollutant Control Approach: Store containers in impervious containment under a roof or other appropriate cover, or inside a building. For storage areas used on site for less than 30 days, a portable temporary secondary system can be used in lieu of a permanent system as described above.

- Place tight-fitting lids on all containers.
- Label all containers appropriately. Store containers so that the labels are clearly visible.
- Place drip pans beneath all mounted container taps and at all potential drip and spill locations during filling and unloading of containers.
- Inspect container storage areas regularly for corrosion, structural failure, spills, leaks, overfills, and failure of piping systems. Check containers daily for leaks/spills. Replace containers, and replace and tighten bungs in drums, as needed.
- Store containers that do not contain free liquids in a sloped designated area with the containers elevated or otherwise protected from stormwater run-on. Comply with local fire codes.
- Secure drums when stored in an area where unauthorized persons may gain access in a manner that prevents accidental spillage, pilferage, or any unauthorized use (Figure IV 4.15).
- If the material is a Dangerous Waste, the business owner must comply with any additional Ecology requirements as specified in Chapter 7, Section 7.2, R.2.
- Storage of reactive, ignitable, or flammable chemicals and materials must comply with the stricter of local zoning codes, local fire codes, the Uniform Fire Code (UFC), UFC standards, or the National Electric Code.

(Photo courtesy of Mark Dilley, Interstate Products, Inc.)

Figure IV - 4.15 Outdoor Drum Storage Unit with Locking Doors.

- Have spill kits or cleanup materials near container storage areas.
- Clean up all spills immediately.
- Cover dumpsters or keep them under cover, such as a lean-to, to prevent the entry of stormwater.
- Replace or repair leaking garbage dumpsters. Keep dumpster lids closed.
- Drain dumpsters and/or dumpster pads to sanitary sewer where approved by the local sewer authority. Dumpster drains must not discharge to stormwater systems.
- When collection trucks directly pick up roll-containers, ensure a filet is on both sides of the curb to facilitate moving the dumpster.
- Keep containers with Dangerous Waste, food waste, or other potential pollutant liquids inside a building unless this is impracticable due to site constraints or applicable fire code requirements.
- Store containers in a designated area that is covered, bermed or diked, paved and impervious in order to contain leaks and spills. Slope the secondary containment to drain into a dead-end sump for the collection of leaks and small spills.
- For liquid materials, surround the containers with a dike as illustrated in Figure IV 4.16. The dike must be of sufficient height to trap a volume of

either 10 percent of the total enclosed volume of the stored containers or 110 percent of the volume contained in the largest container, whichever is greater.

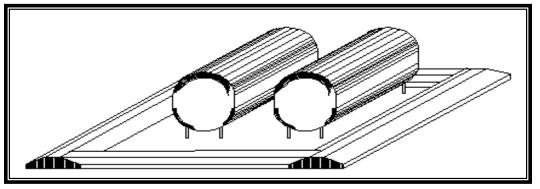


Figure IV - 4.16 Containment Berm Used to Control Liquid-Material Leaks or Spills.

Where material is temporarily stored in drums, use a containment system, as illustrated, in lieu of the above system (Figure IV - 4.17).

(Photo courtesy of Seattle Public Utilities)

Figure IV - 4.17 Temporary Secondary Containment.

- Place containers mounted for direct removal of a liquid chemical for use by employees inside a containment area as described above. Use a drip pan during liquid transfer (Figure IV 4.18).
- For contaminated stormwater in the containment area, connect the sump outlet to a sanitary sewer, if approved by LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service

provider, or to appropriate treatment such as an API or coalescent plate oil/water separator, or other appropriate system (see Volume V). Equip the sump outlet with a normally closed valve to prevent the release of spilled or leaked liquids, especially flammables (in compliance with fire codes), and dangerous liquids. This valve may be opened only for the conveyance of contaminated stormwater to treatment.

Figure IV - 4.18 Mounted Containers with Drip Pans.

• Another option for discharge of contaminated stormwater is to pump it from a dead-end sump or catchment to a tank truck or other appropriate vehicle for off-site treatment and/or disposal.

A4.8 Storage of Liquids in Permanent Aboveground Tanks

Description of Pollutant Sources: Aboveground tanks containing liquids (excluding uncontaminated water) may be equipped with a valved drain, vent, pump, and bottom hose connection. Aboveground tanks may be heated with steam heat exchangers equipped with steam traps. Leaks and spills can occur at connections and during liquid transfer. Oil and grease, organics, acids, alkalis, and heavy metals in tank water and condensate drainage can also cause stormwater contamination at storage tanks.

Pollutant Control Approach: Install secondary containment or a double-walled tank. Slope the containment area to a drain with a sump. Stormwater collected in the containment area may need to be discharged to treatment such as an **API** or **coalescent plate** oil/water separator, or equivalent BMP. Add safeguards against accidental releases including protective guards around tanks to protect against vehicle or forklift damage, and tag valves to reduce human error. *Tank water and condensate discharges are process wastewater that may need an NPDES permit.*

- Inspect the tank containment areas regularly for leaks/spills, cracks, corrosion, etc. to identify problem components such as fittings, pipe connections, and valves.
- Place adequately sized drip pans beneath all mounted taps and drip/spill locations during filling/unloading of tanks. Operators may need valved drain tubing in mounted drip pans.
- Vacuum sweep and clean the tank storage area regularly, if paved.
- Replace or repair tanks that are leaking, corroded, or otherwise deteriorating.
- Storage of flammable, ignitable, and reactive chemicals and materials must comply with the stricter of local zoning codes, local fire codes, the Uniform Fire Code (UFC), UFC standards, or the National Electric Code.
- Locate permanent tanks in impervious (Portland cement concrete or equivalent) secondary containment surrounded by dikes as illustrated in Figure IV - 4.19, or use Underwriters Laboratory approved double-walled tanks. The dike must be of sufficient height to trap a volume of either 10 percent of the total enclosed volume of the tank or 110 percent of the volume contained in the largest tank, whichever is greater.

(Photo courtesy of Seattle Public Utilities)

Figure IV - 4.19 Aboveground Storage Tanks with Secondary Containment.

- Slope the secondary containment to drain to a dead-end sump (optional), or equivalent, for the collection of small spills.
- Include a tank overfill protection system to minimize the risk of spillage during loading.
- Depending on the kind of liquid being stored, the potential and type of stormwater contamination will vary and may require specialized treatment.
- If the tank containment area is uncovered, equip the outlet from the spillcontainment sump with a shutoff valve. The shutoff valve is normally closed and operators may open it manually or automatically, only to convey contaminated stormwater to approved treatment or disposal or convey uncontaminated stormwater to a storm drain. Evidence of contamination can include the presence of visible sheen, color, or turbidity in the runoff, or existing or historical operational problems at the facility. Use simple pH tests with litmus or pH paper for areas subject to acid or alkaline contamination.
- At petroleum tank farms, convey stormwater contaminated with floating oil or debris in the contained area through an API or coalescent plate type oil/water separator (Volume V, Treatment BMPs) or other approved treatment prior to discharge to storm drain or surface water.

A4.9 Parking and Storage for Vehicles and Equipment

Description of Pollutant Sources: Parked vehicles at public and commercial parking lots, such as retail store, fleet vehicle (including rent-a-car lots and car dealerships), equipment sale and rental parking lots, and parking lot driveways, can be sources of toxic hydrocarbons and other organic compounds, oils and greases, metals, and suspended solids.

Pollutant Control Approach: If the parking lot meets the site use thresholds to determine if the site is expected to generate high concentrations of oil, as defined in Step 2: Determine if an Oil Control BMP is Required in Volume I, Section 4.2.2, provide oil removal equipment for the contaminated stormwater runoff.

Required BMPs

- If washing of a parking lot is conducted, discharge the washwater to a sanitary sewer (if allowed by LOTT Alliance Industrial Pretreatment Program at (360) 528-5708) or other approved wastewater treatment system, or collect it for off-site disposal.
- Do not hose down the area to a storm drain or receiving water. Vacuum sweep parking lots, storage areas, and driveways regularly to collect dirt, waste, and debris. Mechanical or hand sweeping may be necessary for areas where a vacuum sweeper cannot reach.
- Clean up vehicle and equipment fluid drips and spills immediately.
- Place drip pans below leaking vehicles (including inoperative vehicles and equipment) in a manner that catches leaks or spills, including employee vehicles. Drip pans must be managed to prevent overfilling and the contents disposed of properly.
- •
- Establishments subject to high-use intensity are significant sources of oil contamination of stormwater. Examples of potential high use areas include customer parking lots at fast food stores, grocery stores, taverns, restaurants, large shopping malls, discount warehouse stores, quick-lube shops, and banks. Refer to Step 2: Determine if an Oil Control BMP is Required in Volume I, Section 4.22 for the site use thresholds that determine if an oil control BMP is required, and for a list of oil control BMPs.

- Encourage employees to repair leaking personal vehicles.
- Encourage employees to carpool or use public transit through incentives.

- Encourage customers to use public transit by rewarding valid transit pass holder with discounts.
- Install catch basin inserts to collect excess sediment and oil if necessary. Inspect and maintain catch basin inserts ton ensure they are working correctly.

A4.10 Storage of Dry Pesticides and Fertilizers

Description of Pollutant Sources: Pesticides such as pentachlorophenol, carbamates, and organometallics can be released to the environment as a result of container leaks and outside storage of pesticide-contaminated materials and equipment. Inappropriate management of pesticides or fertilizers can result in stormwater contamination. Runoff contaminated by pesticides and fertilizers can severely degrade streams and lakes and adversely affect fish and other aquatic life.

Pollutant Control Approach: Store fertilizer and pesticide properly to prevent stormwater contamination.

- Store pesticides and fertilizers in enclosed impervious containment areas that prevent precipitation or unauthorized personnel from coming into contact with the materials.
- Containers and bags must be covered, intact, and off the ground.
- Store all material so that it cannot come into contact with water.
- Immediately clean up any spilled fertilizer or pesticides.
- Keep pesticide and fertilizer contaminated waste materials in designated covered and contained areas, and dispose of properly.
- Store and maintain spill cleanup materials near the storage area.
- •
- Sweep paved storage areas as needed. Collect and dispose of spilled materials. Do not hose down the area
- Do not discharge pesticide contaminated stormwater or spills/leaks of pesticides to storm sewers or to the sanitary sewer. Contaminated stormwater must be collected and disposed of properly. Unused or spilled/leaked pesticides must be disposed of according to the label.
- Comply with WAC 16-228-1220 and Chapter 16-229 WAC.
 - MF-01,02,03,04: Filtration

Section A5

Construction and Demolition Activities

A5.1 Construction Demolition

Description of Pollutant Sources: This activity applies to removal of existing buildings by controlled explosions, wrecking balls, or manual methods, and subsequent clearing of the rubble. The loose debris can contaminate stormwater.

Pollutants of concern include toxic organic compounds, heavy metals, and suspended solids.

Pollutant Control Approach: Do not expose hazardous material to stormwater. Regularly cleanup debris that can contaminate stormwater. Protect the stormwater drainage system from dirty runoff and loose particles. Sweep paved surfaces daily. Educate employees about the need to control site activities.

- Identify, remove, and properly dispose of hazardous substances from the building before beginning construction demolition activities that could expose them to stormwater. Such substances could include PCBs, asbestos, lead paint, mercury switches, and electronic waste.
- Educate employees about the need to control site activities to prevent stormwater pollution, and also train them in spill cleanup procedures.
- Keep debris containers, dumpsters, and debris piles covered.
- Storm drain covers or a similarly effective containment device must be placed on all nearby drains to prevent dirty runoff and loose particles from entering the stormwater drainage system (Figure IV 4.20). Covers shall be placed at the beginning of the workday and the accumulated materials collected and disposed of before removing the covers at the end of the workday. If storm drains are not present, dikes, berms, or other methods must be used to protect overland discharge paths from runoff. See BMPs S.2 and S.7 in Chapter 5 for more information on runoff control and disposal options.

(Photo courtesy of Mark Dilley, Interstate Products, Inc.)

Figure IV - 4.20 Commercially Available Gutter Guard Being Replaced.

- Street gutters, sidewalks, driveways, and other paved surfaces in the immediate area of the demolition must be swept at the end of each workday to collect and properly dispose of loose debris and garbage.
- Water should be lightly sprayed (such as from a hydrant or water truck) throughout the site to help control wind blowing of fine materials such as soil, concrete dust, and paint chips. The amount of water must be controlled so that runoff from the site does not occur, yet dust control is achieved. Oils must never be used for dust control. Contact Thurston County Development Services at (360) 786-5490 and Olympic Region Clean Air Agency to obtain required permits. Additional information is available at the following web sites:

www.co.thurston.wa.us/permitting/index.htm and https://www.orcaa.org.

- Construct a screen to prevent stray building materials and dust from escaping the area during demolition. Size and orient the screen to capture wind-blown materials and contain them onsite.
- Schedule demolition to take place at a dry time of the year.

A5.2 Building Repair, Remodeling, Painting, and Construction

Description of Pollutant Sources: This activity refers to activities associated with construction of buildings and other structures, remodeling of existing buildings and houses, and general exterior building repair work.

Pollutants of concern include toxic hydrocarbons, hazardous wastes, toxic organics, suspended solids, heavy metals, pH, oils, and greases.

Pollutant Control Approach: Employees must be educated about the need to control site activities. Control leaks, spills, and loose material. Utilize good housekeeping practices. Regularly clean up debris that can contaminate stormwater. Protect the drainage system from dirty runoff and loose particles.

- Identify, remove, and properly dispose of hazardous substances from the building before beginning repairing or remodeling activities that could expose them to stormwater. Such substances could include PCBs, asbestos, lead paint, mercury switches, and electronic waste.
- Employees must be educated about the need to control site activities to prevent stormwater pollution, and also trained in spill cleanup procedures.
- Spill cleanup materials, appropriate to the chemicals being used on site, must be available at the work site at all times.
- The work site must be cleaned up at the end of each workday, with materials such as solvents put away indoors or covered and secured so that vandals will not have access to them.
- The area must be swept daily to collect loose litter, paint chips, grit, and dirt.
- Absolutely no substance can be dumped on pavement, on the ground, or in or toward storm drains, regardless of its content, unless it is water only.
- For wood treating activities drop cloths must be placed where space and access permit before the work begins. Additional drip pans must be used in areas where drips are likely to occur that cannot be protected with a drop cloth.
- Ground or drop cloths must be used underneath scraping, sandblasting work. Ground cloths, buckets, or tubs must also be used anywhere that work materials are laid down.
- Incidental cleaning of paint brushes and other tools that are covered with water-based paints must be cleaned in sinks connected to sanitary sewers or in portable containers that can subsequently be dumped into a sanitary sewer drain. Brushes and tools covered with non-water-based finishes or

other materials must be cleaned in a manner that enables collection of used solvents for recycling or proper disposal and cannot be discharged to the sanitary sewer. See BMP S.2 in Chapter 5 for disposal options.

- Storm drain covers or similarly effective devices must be used if dust, grit, washwater, or other pollutants may escape the work area. This is particularly necessary on rainy days. The cover or containment device shall be placed over the storm drain at the beginning of the workday, and accumulated dirty runoff and solids must be collected and disposed of before removing the cover at the end of the day.
- Refer to A1.3 Washing, Pressure, and Steam Cleaning of Vehicles/Equipment/Building Structures for BMPs associated with power washing buildings.

- Recycle materials whenever possible.
- Light spraying of water on the work site can control some of the dust and grit that can blow away. Oils must never be used for dust control. Never spray to the point of runoff from the site.
- Activities such as tool cleaning should occur over a ground cloth or within a containment device such as a tub.
- Consider using filtered vacuuming to collect waste that may be hard to sweep, such as dust on a drop cloth.
- If conducting work in wet weather conditions, consider setting up temporary cover when scraping or pressure-washing lead-based paint.

Section A6

Dust Control and Soil and Sediment Control

A6.1 Dust Control at Disturbed Land Areas and Unpaved Roadways and Parking Lots

Note: Contact the Olympic Region Clean Air Agency for appropriate and required BMPs for dust control to implement at your project site. Additional information on dust control can also be found in Volume II of this manual.

Description of Pollutant Sources: Dust can cause air and water pollution problems particularly at demolition sites, disturbed land areas, and unpaved roadways and parking lots.

Pollutant Control Approach: Minimize dust generation and apply environmentally friendly and government approved dust suppressant chemicals, if necessary.

Required BMPs

 Sprinkle or wet down soil or dust with water as long as it does not result in a wastewater discharge (Figure IV - 4.21).

Figure IV - 4.21 Dust Suppression by Water Spray.

- Use only local and/or state government approved dust suppressant chemicals such as those listed in Ecology publication No. 96-433, *Methods for Dust Control*. Apply according to the manufacturer's recommendations. See also BMP C126, Polyacrylamide for Soil Erosion Protection, in Volume II of this manual.
- Avoid excessive and repeated applications of dust suppressant chemicals. Time the application of dust suppressants to avoid or minimize their washoff by rainfall or human activity such as irrigation.

- Avoid driving over treated areas as this will break the crust formed by the dust suppressant, rendering it less effective.
- Apply stormwater containment to prevent the conveyance of sediments and/or dust suppressant chemicals into storm drains or receiving waters.
- The use of motor oil for dust control is prohibited. Take care when using lignin derivatives and other high BOD chemicals in areas susceptible to contaminating surface water or groundwater.
- Consult with the Ecology Southwest Regional Office on discharge permit requirements if the dust suppression process results in a wastewater discharge to the ground, groundwater, storm drain, or surface water.
- Protect inlets/catch basins during application of dust suppressants.
- Street gutters, sidewalks, driveways, and other paved surfaces in the immediate area of the activity must be swept regularly to collect and properly dispose of dust, dirt, loose debris, and garbage.
- Install catch basin filter socks on site and in surrounding catch basins to collect sediment and debris. Maintain the filters regularly to prevent plugging.

Suggested BMPs for Roadways and Other Trafficked Areas

- Consider limiting use of off-road recreational vehicles on dust generating land.
- Consider graveling or paving unpaved permanent roads and other trafficked areas at municipal, commercial, and industrial areas.
- Consider paving or stabilizing shoulders of paved roads with gravel, vegetation, or chemicals approved for that use.
- Encourage use of alternate paved routes, if available.
- Vacuum sweep fine dirt and skid control materials from paved roads soon after winter weather ends or when needed.
- Consider using pre-washed traction sand to reduce dust emissions.

Suggested BMPs for Dust Generating Areas

- Prepare a dust control plan. Helpful references include: *Control of Open Fugitive Dust Sources* (EPA-450/3-88-088) and *Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures* (EPA-450/2-92-004).
- Limit exposure of soil (dust source) as much as feasible.

- Stabilize dust-generating soil by growing and maintaining vegetation, mulching, topsoiling, and/or applying stone, sand, or gravel.
- Apply windbreaks in the soil such as trees, board fences, tarpaulin curtains, bales of hay, etc.

A6.2 Dust Control at Manufacturing Sites

Note: Contact the Olympic Region Clean Air Agency for appropriate and required BMPs for dust control to implement at your project site. Additional information on dust control can also be found in Volume II of this manual.

Description of Pollutant Sources: Industrial material handling activities can generate considerable amounts of dust that can contaminate stormwater. This dust is typically removed using exhaust systems. Dusts can be generated at cement and concrete product mixing facilities, and wherever powdered materials are handled. Particulate materials that are of concern to air pollution control agencies include grain dust, sawdust, coal, gravel, crushed rock, cement, and boiler fly ash. The objective of this BMP is to reduce the stormwater pollutants caused by dust generation and control.

Pollutant Control Approach: Prevent dust generation and emissions where feasible, regularly cleanup dust that can contaminate stormwater, and convey dust contaminated stormwater to proper treatment.

Required BMPs

- Clean powder material handling equipment and vehicles as needed to remove accumulated dust and residue.
- Regularly sweep dust accumulation areas that can contaminate stormwater. Conduct sweeping using vacuum filter equipment to minimize dust generation and to ensure optimal dust removal.
- Use dust filtration/collection systems such as bag house filters or cyclone separators, to control vented dust emissions that could contaminate stormwater. Control of zinc dusts in rubber production is one example.
- Maintain on-site controls to prevent vehicle track-out
- Maintain dust collection devices on a regular basis.

- In manufacturing operations, train employees to handle powders carefully to prevent generation of dust.
- Use water spray to flush dust accumulations to sanitary sewers where allowed by Thurston County or to other appropriate treatment system. Contact LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider for details.
- Install sedimentation basins, wet ponds, wet vaults, vegetated filter strips, or equivalent sediment removal BMPs.
- Use in the recommended manner, approved dust suppressants such as those listed in Ecology publication No. 96-433 *Methods for Dust Control*

(Ecology 1996). Application of some products may not be appropriate in close proximity to receiving waters or conveyances close to receiving waters. For more information, check with the Ecology Southwest Regional Office or Thurston County.

A6.3 Soil Erosion and Sediment Control at Industrial Sites

Description of Pollutant Sources: Industrial activities on soil areas, exposed and disturbed soils, steep grades, etc. can be sources of sediments that can contaminate stormwater runoff.

Pollutant Control Approach: Limit the exposure of erodible soil, stabilize or cover erodible soil where necessary to prevent erosion, and/or provide treatment for stormwater contaminated with total suspended solids caused by eroded soil.

- Limit the exposure of erodible soil.
- Stabilize entrances/exits to prevent track-out. See BMP C105: Stabilized Construction Entrance/Exit
- Stabilize or cover erodible soil to prevent erosion. Apply one or more of the following cover practices:
 - Use vegetative cover such as grass, trees, or shrubs on erodible soil areas
 - Cover exposed areas with mats such as clear plastic, jute, or synthetic fiber. See BMP C122: Nets and Blankets and BMP C123: Plastic Covering
 - Preserve natural vegetation including grass, trees, shrubs, and vines when possible. See BMP C101: Preserving Natural Vegetation.
- If stabilizing or covering the erodible soil is not possible, then apply one or more of the following structural practices to control sediment:
 - Vegetated swales
 - BMP C200: Interceptor Dike and Swale
 - BMP C233: Silt fence
 - BMP C207: Check Dams
 - BMP C232: Gravel Filter Berm
 - Sedimentation basin
 - Proper grading
 - Paving

For design information refer to Volume II, Standards and Specifications for BMPs.

Section A7

Other Activities

A7.1 Commercial Animal Handling Areas

Description of Pollutant Sources: Animals at racetracks, kennels, fenced pens, veterinarians, and businesses that provide boarding services for horses, dogs, cats, etc. can generate pollutants from the following activities: manure deposits, animal washing, grazing, and any other animal handling activity that could contaminate stormwater. Pollutants can include coliform bacteria, nutrients, and total suspended solids. Individual Stormwater Permits covering commercial animal handling facilities include additional applicable source controls.

Pollutant Control Approach: Prevent, to the maximum extent practicable, the discharge of contaminated stormwater from animal handling and keeping areas.

- Regularly sweep and clean animal keeping areas to collect and properly dispose of droppings, uneaten food, and other potential stormwater contaminants.
- Do not hose down areas that contain potential stormwater contaminants where they drain to storm drains or to receiving waters.
- Do not discharge any washwater to storm drains or to receiving waters without proper treatment.
- If animals are kept in unpaved and uncovered areas, the ground must either have vegetative cover or some other type of ground cover, such as mulch.
- Surround the area where animals are kept with a fence or other means to prevent animals from moving away from the controlled area where BMPs are used.
- For outside surface areas that must be disinfected, use an unsaturated mop to spot clean the areas. Do not allow wastewater runoff to enter the drainage system.
- Do not stockpile manure in areas where runoff is allowed to flow into a storm drain or to nearby receiving waters or wetlands.

A7.2 Keeping Livestock in Stables, Pens, Pastures, or Fields

This activity applies to management of all types of livestock. Manure from livestock can pollute stormwater and local water bodies. Animals that are not fenced off from creeks and streams can also cause severe erosion of stream banks, which in turn can silt up fish spawning areas. Certain areas of Thurston County require the filing of a livestock management plan. Contact the Thurston County Conservation District at (360) 754-3588 for more information and assistance in preparing such a plan. Thurston County/WSU Cooperative Extension at (360) 867-2151 also has literature to help you more effectively manage your pastures and livestock. Feedlots containing more than 100 animals may require an NPDES permit for Concentrated Animal Feeding Operations.

Pollutants of Concern: Nutrients, suspended solids, oxygen demanding substances (i.e., BOD and COD), fecal bacteria.

Required BMPs

The following BMPs or equivalent measures are required of all businesses and citizens keeping livestock in stables, pens, pastures, or fields:

- Restrict animal access to creeks and streams, preferably by fencing. There are ways to fence and still allow animals drinking access to the stream, without allowing bank trampling and minimizing fecal inputs into the stream. Contact the Thurston County Conservation District for more information on fencing, including how to get money to provide such fencing. They can also help you with replanting the stream banks to prevent further erosion. A minimum setback of 20 feet from the center of the streambed will be required on each side. Major tributaries and large farm ditches should be fenced as well.
- Dispose of manure from stables and pens properly. Do not pile it where rain will wash nutrients into constructed or natural stormwater drainage systems that leave your land. Place it within a bermed area to contain runoff, or cover it with a tarpaulin. It may also be placed in a grassy area as far from watercourses as possible, so that any seepage has a chance to be filtered and absorbed by the grasses before reaching a creek or stream.

Suggested BMPs

• On fields where animals are pastured, a rotational grazing system should be developed. This would mean that a field would need to be divided into a minimum of four equal units, and the stock rotated from one unit to another. The stock should not be allowed onto the pastures until the grass reaches a minimum height of 6 inches. They should be moved to the second field when the grass height is down to approximately 3 inches.

Each field should be allowed to recover for a period of 21 to 28 days prior to regrazing.

- Monitor grazing carefully. If 90 percent of the plants' leaves are removed, the roots will stop growing for at least 18 days. If only 40 percent or less of the leaves are removed, the roots will continue to grow. Not only will overgrazing or overstocking limit pasture production, but the pastures become vulnerable to the invasion of unpalatable or poisonous weed species such as tussock, moss, buttercup, tansy ragwort, and thistle.
- Grazing should be discontinued starting in early October. Neither the animals nor the fields benefit from grazing during the winter. Since the plants are basically dormant, the protein content is extremely low. The fields become compacted and rutted, thus reducing soil tilth, which in turn reduces summer grass yields. Fence off a small portion of your pasture to sacrifice during winter, and feed hay and grain instead of grazing.
- Proper pasture management should also include the practices of clipping and harrowing the fields after the stock has been removed. This is done to assure uniform growth and to avoid excessive damage to the stand and a consequent reduction in yields. This would also be the optimum time to apply fertilizer, such as manure, to the fields in a manner which does not contribute to runoff.
- Weed control is very important for maintaining highly productive pastures. If you follow the practices described above, you will go a long way toward effective weed control. You may occasionally need to apply herbicides, but do so judiciously. Remember that it is much easier to take care of a few thistles early on than it is to get rid of a field full.

A7.3 Log Sorting and Handling

Description of Pollutant Sources: Log yards are areas where logs are transferred, sorted, debarked, cut, and stored to prepare them for shipment or for the production of dimensional lumber, plywood, chips, poles, or other products. Log yards are generally maintained at sawmills, shipping ports, and pulp mills. Typical pollutants include oil and grease, BOD settleable solids, total suspended solids (including soil), high and low pH, heavy metals, pesticides, wood-based debris, and leachate.

The following are pollutant sources:

- 1. Log storage, rollout, sorting, scaling, and cutting areas
- 2. Log and liquid loading areas
- 3. Log sprinkling
- 4. Debarking, bark bin, and conveyor areas
- 5. Bark, ash, sawdust and wood debris piles, and solid wastes
- 6. Metal salvage areas
- 7. Truck, rail, ship, stacker, and loader access areas
- 8. Log trucks, stackers, loaders, forklifts, and other heavy equipment
- 9. Maintenance shops and parking areas
- 10. Cleaning areas for vehicles, parts, and equipment
- 11. Storage and handling areas for hydraulic oils, lubricants, fuels, paints, liquid wastes, and other liquid materials
- 12. Pesticide usage for log preservation and surface protection
- 13. Application of herbicides for weed control
- 14. Contaminated soil resulting from leaks or spills of fluids.

Ecology's Baseline General Permit Requirements

Industries with log yards are required to obtain coverage under the Industrial Stormwater General Permit for discharges of stormwater associated with industrial activities. The permit requires preparation and on-site retention of an Industrial Stormwater Pollution Prevention Plan (SWPPP). Required and Suggested operational, source control, and treatment BMPs are presented in detail in Ecology's Guidance Document: Industrial Stormwater General Permit Implementation Manual for Log Yards, publication No. 0410-031. It is recommended that all log yard facilities obtain a copy of this document.

A7.4 Boat Building, Mooring, Maintenance, and Repair

Description of Pollutant Sources: Sources of pollutants at boat and ship building, repair, and maintenance facilities at boatyards, shipyards, ports, and marinas include pressure washing, surface preparation, paint removal, sanding, painting, engine maintenance and repairs, and material handling and storage, if conducted outdoors.

Potential pollutants include spent abrasive grits, solvents, oils, ethylene glycol, washwater, paint over-spray, cleaners/detergents, anti-corrosive compounds, paint chips, scrap metal, welding rods, resins, glass fibers, dust, and miscellaneous trash. Proper application of anti-fouling paints is of particular concern in marine environments. Pollutant constituents include total suspended solids, oil and grease, organics, copper, lead, tin, and zinc.

Pollutant Control Approach: Apply good housekeeping, preventive maintenance, and cover and contain BMPs in and around work areas.

NPDES and State Waste Discharge Permit Requirements: Ecology's statewide Boatyard General Permit applies to boatyards that discharge stormwater runoff from areas with industrial activity directly to the ground, to a surface waterbody, or to a storm sewer system that drains to a surface waterbody. This general permit also regulates wastewater form pressure washing in boatyards. All boatyards in the state must apply for coverage under this permit and must comply with all conditions specified in this permit, as applicable to their facility, unless exempted. Ecology may require coverage under an individual NPDES permit for large boatyards and shipyards in Washington State not covered by the Boatyard General Permit or Industrial Stormwater General Permit (ISGP).

- Maintenance and repair activities that can be moved on-shore must be moved accordingly. This action reduces some of the potential for direct pollution impact on water bodies.
- Clean regularly all accessible work, service, and storage areas to remove debris, spend sandblasting material, and any other potential stormwater pollutants.
- Immediately repair leaking connections, valves, pipes, hoses, and other equipment that may cause the contamination of stormwater.
- Use drip pans, drop cloths, tarpaulins, or other protective device in all paint mixing and solvent operation unless carried out in impervious contained and covered areas.

- Convey sanitary sewage to pump-out stations, portable on-site pump-outs, commercial mobile pump-out facilities, or other appropriate onshore facilities.
- Prohibit uncontained spray painting, blasting, or sanding activities during windy conditions that render containment ineffective.
- Do not dump or pour waste materials down floor drains, sinks, or outdoor storm drain inlets that discharge to surface water. Plug floor drains connected to storm drains or to surface water. If necessary, install a regularly operated sump pump.
- Do not burn paint and/or use spray guns on topsides or above decks.
- Enclose, cover, or contain blasting and sanding activities to the maximum extent practicable to prevent abrasives, dust, and paint chips, from reaching storm sewers or receiving waters. Use plywood and /or plastic sheeting to cover open areas between decks when sandblasting (scuppers, railings, freeing ports, ladders, and doorways). Move the activity indoors if possible. See Chapter 7 for details on Olympic Region Clean Air Agency (ORCAA) limitations.
- Prohibit uncontained spray painting, blasting, or sanding activities over open water.
- Use plastic or tarpaulin barriers beneath the gull and between the hull and dry dock walls to contain and collect waste and spent materials. Clean and sweep regularly to remove debris. Ground cloths must be used for collection of drips and spills in painting and finishing operations, and paint chips and used blasting sand from sand blasting (Figure IV 4.22).
- Collect spent abrasives regularly and store under cover to await proper disposal.
- Use fixed platforms with appropriate plastic or tarpaulin barriers as work surfaces and for containment when performing work on a vessel in the water to prevent blast material or paint overspray from contacting stormwater or the surface water. Keep the use of such platforms to a minimum, and to not perform extensive repair, modification, surface preparation, or coating while the boat is in the water (anything in excess of 25 percent of the surface area of the vessel above the waterline).

Figure IV - 4.22 Drop Cloth Used During Hull Sanding.

- Dispose of greasy rags, oil filters, air filters, batteries, spent coolant, and degreasers properly.
- Store cracked batteries in covered secondary containers.
- Drain oil filters before disposal or recycling.
- Maintain automatic bilge pumps in a manner that will prevent automatic pumping of waste material into surface water.
- Ballast water that has an oily sheen on the surface must be collected for proper disposal rather than discharged on land or water. See BMP S.2 in Chapter 5 for details on disposal options.
- Maintenance yard areas must be swept and cleaned, without hosing down the area, at least once per week or as needed. This prevents sandblasting materials, scrapings, paint chips, oils, and other loose debris from being carried away with stormwater. The collected materials must be disposed of properly. See BMP S.2 in Chapter 5 for disposal options.
- Sweep rather than hose debris on the dock. Collect and convey hose water to treatment if hosing is unavoidable.
- Paint and solvent mixing, fuel mixing and similar handling of liquids shall be performed on shore, or such that no spillage can occur directly into surface water bodies.
- Locate spill kits so they are readily accessible on all piers and docks.

- Whenever the boat is in the water, avoid the use of soaps, detergents and other chemicals that need to be rinsed or hosed off. If necessary, consider applying sparingly so that a sponge, towel or rag can be used to remove residuals. Consider instead washing the boat in a suitable controlled area while it's out of the water.
- Direct deck drainage to a collection system sump for settling and/or additional treatment.
- Immediately clean up any spillage on the pier, wharf, boat, ship deck, or adjacent surface areas and dispose of the wastes properly.
- Apply source control BMPs for other activities conducted at the marina, boat yard, shipyard, or port facility (see A2.2 Fueling at Dedicated Stations, A1.3 Washing, Pressure Washing, and Steam Cleaning of Vehicles/Equipment/Building Structures, and A7.15 Spills of Oil and Hazardous Substances). Comply with BMP A2.3 and A4.2 if engine repair and maintenance are conducted.
- In the event of an accidental discharge of oil or hazardous material into waters of the state or onto land with a potential for entry into state waters, immediately notify the yard, port, or marina owner or manager, Ecology, and the National Response Center at 1-800-424-8802 (24-hour). If the spill can reach or has reached marine waters, contact the U.S. Coast Guard at (206) 217-6200.

• Consider recycling paint, paint thinner, solvents, used oils, oil filters, pressure wash wastewater and any other recyclable materials. Most marinas now offer used oil recycling services. To dispose of filters, let drain 24 hours, then double wrap in plastic and dispose of in the regular garbage, or take them to the Thurston County Waste and Recovery Center, HazoHouse for disposal and recycling. Pending state legislation may make disposal in the garbage illegal, so contact the HazoHouse at (360) 786-5494 for current information.

A7.5 Logging

Description of Pollutant Sources: This activity covers logging activities that fall under the Washington State Forest Practices Act category of Class IV general forest practices. These are situations where timber harvesting is done in the process of converting forest lands into other land uses, such as home and business construction. Stormwater runoff from bare ground exposed during logging contains large amounts of dirt and other pollutants. This material can clog ditches and stream channels, thus reducing carrying capacity and increasing flooding, as well as smothering spawning beds for fish. Simply controlling runoff and not allowing it to leave the site will prevent these harmful effects. Clearing and grading activities are covered in detail in Volume II of this manual.

Coverage under Ecology's construction stormwater general permit is required for construction sites that result in the disturbance of one acre or more of land. Compliance with the Construction Stormwater Pollution Prevention requirements in Ecology's manual is required, as applicable. Virtually all logging operations will require a permit from the Washington State Department of Natural Resources (WDNR). Sensitive/critical areas and wetlands ordinances for Thurston County also contain requirements for logging activities in the vicinity of water bodies.

Pollutants of concern include suspended solids, oils and greases, oxygen demanding substances (i.e., BOD and COD), nutrients, toxic organic compounds, and heavy metals.

Pollutant Control Approach: Maintain required buffers adjacent to critical areas, including streams and wetlands. Keep sediments out of water bodies and off paved areas.

Required BMPs

- Vegetation along stream corridors, and adjacent to other water bodies and wetlands, must be preserved. Maintenance of a vegetated buffer enables filtration of most of the pollutants of concern for this activity. The above-mentioned ordinances contain specific requirements for buffer setbacks.
- Logging access roads must have a crushed rock or spall apron construction entrance where they join the pavement to prevent sediments from being tracked onto the pavement.
- On-site fueling and maintenance operations must follow the required BMPs as outlined in A2.4 Mobile Fueling of Vehicles and Heavy Equipment; A2.3 Engine Repair and Maintenance; and A.4.7 Storage of Liquid or Dangerous Waste Containers.

Suggested BMPs

• Erosion potential can be reduced by avoiding logging on steep slopes.

- If access roads are constructed for logging, they should be provided with drainage ditches that divert runoff into vegetated areas or stormwater treatment systems.
- Plant vegetated buffers in areas where they are already lost downslope of proposed logging areas, with sufficient lead time to allow for effective growth.

A7.6 Mining and Quarrying of Sand, Gravel, Rock, Minerals, Peat, Clay, and Other Materials

Description of Pollutant Sources: This activity applies to surface excavation and onsite storage of sand, gravel, and other materials that are mined. All mining operations that have stormwater runoff from the site are required to apply for a NPDES permit with Ecology. Ecology has specific BMPs required by the permit. Some additional BMPs to help meet Ecology's discharge performance standards are listed below.

Pollutants of concern are suspended solids, nutrients, pH, and metals.

Pollutant Control Approach: Provide containment and or cover for any on-site storage areas to prevent run-on and discharge of suspended solids and other pollutants.

Suggested BMPs

- If the material is appropriate, use excavated spoil material to form compacted berms along downslope sides of the site to contain runoff. Berms should be seeded to promote growth of grass or other vegetation to limit erosion from the berms. Safety considerations must be examined to prevent flooding due to berm failure.
- Semi-permanent stockpiles should be seeded to promote vegetation growth to limit erosion from the stockpiles.
- Use sedimentation basins to promote settling of suspended solids, or infiltration basins to filter suspended solids, to cleanup runoff before it leaves the site. See Volume V for a further discussion of treatment BMPs.
- Use anchored tarps to cover stockpiles at small-scale mining operations if there is a potential for contaminated stormwater to leave the site.

A7.7 Pools, Spas, Hot Tubs, and Fountains

Description of Pollutant Sources: This section includes BMPs for pools, spas, hot tubs, and fountains used for recreational and/or decorative purposes that may use chemicals and/or be heated. Industrial Stormwater Permittees that use pools, spas, hot tubs, and fountains as part of an industrial process should refer to their Industrial Stormwater Permit.

Discharge from pools, spas, hot tubs, and fountains can degrade ambient water quality. The waters from these sources typically contain bacteria that contaminate the receiving waters. Chemicals lethal to aquatic life such as chlorine, bromine and algaecides can be found in pools, spas, hot tubs, and fountains. These waters may be at an elevated temperature and can have negative effects on receiving waters and to aquatic life. Diatomaceous earth backwash from swimming pool filters can clog gills and suffocate fish.

Routine maintenance activities generate a variety of wastes. Chlorinated water, backwash residues, algaecides, and acid washes are a few examples. Direct disposal of these waters to stormwater drainage systems and waters of the State is not permitted without prior treatment and approval.

The quality of any discharge to the ground after proper treatment must comply with the Water Quality Standards for Groundwaters of the State of Washington, Chapter 173-200 WAC.

The Washington State Department of Health and local health authorities regulate Water Recreation facilities which include pools, spas, and hot tubs. Owners and operators of those facilities must comply with those regulations, policies and procedures. Following the guidelines here does not exempt or supersede any requirements of the regulatory authorities.

Pollutant Control Approach: Many manufacturers do not recommend draining pools, spas, hot tubs or fountains; refer to the facility's operation and maintenance manual. Dispose of pool or spa water to the sanitary sewer after getting preapproval from the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider or to a storm sewer following the conditions outlined below. Do not discharge to a septic system, since it may cause the system to fail.

- Clean the pool, spa, hot tub, or fountain regularly. Maintain proper chlorine levels per manufacturer's recommendations, and maintain water filtration and circulation. Doing so will limit the need to drain the facility.
- Manage pH and water hardness to reduce copper pipe corrosion that can stain the facility and pollute receiving waters.

- Before using copper algaecides, try less toxic alternatives. Only use copper algaecides if the other alternatives do not work. Ask a maintenance service or pool chemical supplier for help resolving persistent algae problems without using copper algaecides.
- Develop, implement, and regularly update a facility maintenance plan that follows all discharge requirements.
- Dispose of unwanted chemicals properly. Many of them are hazardous wastes when discarded.
- Discharge waters originating from a pool, spa, hot tub, or fountain to a sanitary sewer, if approved by the local sewer authority. Do not discharge waters containing copper-based algaecides to storm sewer systems.
- If discharge to the sanitary sewer is not possible, pool and spa water may be discharged to a ditch or stormwater drainage system. Do not discharge water directly from a pool, spa, hot tub, fountain, process wastes, or wastewaters into storm drains except if the discharge water is:
 - Dechlorinated to a concentration of 0.1 ppm or less (some guidance on dechlorination is provided in the Department of Health's Water System Design Manual, Revised 12/09, DOH Publication 331-123. The Department of Health manual further references AWWA. 1999b. C651 AWWA Standard for Disinfecting Water Mains. American Water Works Association, Denver, CO. and AWWA. 2002. C652 AWWA Standard for Disinfecting Water Storage Facilities. American Water Works Association, Denver, CO. for more details.) Contact a pool chemical supplier to obtain the neutralizing chemicals needed),
 - Free from sodium chloride.
 - pH-adjusted.
 - Reoxygenated, if necessary.
 - Free of any coloration, dirt, suds, or algae.
 - Volumetrically and velocity controlled to prevent resuspension of sediments.
 - Free of any filter media.
 - Free of acid cleaning wastes.
 - At a temperature that will prevent an increase in temperature in the receiving water. Cool heated water prior to discharge.

- Released at a rate that can be accommodated by the receiving body (i.e., can infiltrate or be safely conveyed).
- Swimming pool cleaning wastewater and filter backwash shall not be discharged to the storm sewer.
- Bag diatomaceous earth (pool filtering agent) and dispose at a landfill.
- Ensure that the pool/spa/hot tub/fountain system is free of leaks and operates within the design parameters.
- Do not provide any permanent links to stormwater drainage systems. All connections should be visible and carefully controlled.
- If the dechlorination or cooling process selected requires the water to be stored for a time, it should be contained within the pool or appropriate temporary storage container.

• Hire a professional pool-draining service to collect all pool water for off-site disposal.

A7.8 De-icing and Anti-icing Operations for Airports

Refer to 40 CFR Part 449 for EPA effluent limitations guidelines and new source performance standards to control discharges of pollutants from airport deicing operations.

Description of Pollutant Sources: De-icing and/or anti-icing compounds are used on highways, streets, airport runways, and on aircraft to control ice and snow. Typically ethylene glycol and propylene glycol are de-icing chemicals used on aircraft. De-icing chemicals commonly used on highways and streets include calcium magnesium acetate (CMA), calcium chloride, magnesium chloride, sodium chloride, urea, and potassium acetate. The de-icing and anti-icing compounds become pollutants when they are conveyed to storm drains or to surface water after application where they deplete oxygen in the receiving water. Leaks and spills of these chemicals can also occur during their handling and storage.

Pollutant Control Approach for Aircraft: Spent glycol discharges in aircraft application areas are regulated process wastewaters under Ecology's Industrial Stormwater General Permit. BMPs for aircraft anti-icing chemicals must be consistent with aviation safety and the operational needs of the aircraft operator.

Required BMPs for Aircraft:

- Conduct aircraft de-icing or anti-icing applications in impervious containment areas. Collect aircraft de-icing spent chemicals, such as glycol, draining from aircraft in de-icing or anti-icing application areas and convey to a sanitary sewer, treatment, or other approved disposal or recovery method. Contact the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 to obtain permit for discharges to sanitary sewer. Divert de-icing runoff from paved gate areas to appropriate collection areas or conveyances for proper treatment or disposal.
- Do not discharge spent de-icing chemicals or stormwater contaminated with aircraft de-icing chemicals from application areas including gate areas, into storm drains. No discharge should occur to surface water or groundwater, directly or indirectly.
- Transfer de-icing and anti-icing chemicals on an impervious containment pad, or equivalent spill/leak containment area, and store in secondary containment areas (see Storage of Liquids in Aboveground Tanks).

Suggested BMPs for Aircraft:

- Establish a centralized aircraft de/anti-icing facility, if feasible and practicable, or in designated areas of the tarmac equipped with separate collection drains for the spent de-icing liquids.
- Consider installing an aircraft de/anti-icing chemical recovery system, or contract with a chemical recycler, if practicable.

Required BMPs for Airport Runways/Taxiways:

- Avoid excessive application of all de/anti-icing chemicals, which could contaminate stormwater.
- Store and transfer de/anti-icing materials on an impervious containment pad or an equivalent containment area and/or under cover in accordance with BMP Storage or Transfer (Outside) of Solid Raw Materials, By-Products, or Finished Products in this volume. Consider other material storage and transfer approaches only if the anti-icing the material cannot reach surface or groundwater.

Suggested BMPs for Airport Runways/Taxiways:

- Include limits on toxic materials and phosphorous in the specifications for de/anti-icing chemicals, where applicable.
- Consider using anti-icing materials rather than de-icing if it will result in less adverse environmental impact.
- Select cost-effective de/anti-icing chemicals that cause the least adverse environmental impact.

A7.9 Roof and Building Drains at Manufacturing and Commercial Buildings

Description of Pollutant Sources: Stormwater runoff from roofs and sides of manufacturing and commercial buildings can be sources of pollutants caused by leaching of roofing materials, building vents, and other air emission sources. Vapors and entrained liquid and solid droplets/particles have been identified as potential pollutants in roof/building runoff. Metals, solvents, acidic/alkaline pH, BOD, and organics are some of the pollutant constituents identified.

Ecology has performed a study on zinc in industrial stormwater. The study is presented in Ecology Publication 08-10-025, *Suggested Practices to reduce Zinc Concentrations in Industrial Stormwater Discharges*. The user should refer to this document for more details on addressing zinc in stormwater.

Pollutant Control Approach: Evaluate the potential sources of stormwater pollutants and apply source control BMPs where feasible.

- If leachates and/or emissions from buildings are suspected sources of stormwater pollutants, then sample and analyze the stormwater draining from the building.
- Sweep the area routinely to remove any residual pollutants.
- If a roof/building stormwater pollutant source is identified, implement appropriate source control measures such as air pollution control equipment, selection of materials, operational changes, material recycle, process changes, etc.
- Bare galvanized metal shall not be used for materials that convey stormwater, such as roofs, canopies, siding, gutters, downspouts, roof drains, and pipes. Any galvanized materials shall have an inert, non-leachable finish, such as baked enamel, fluorocarbon paint (such as Kynar or Hylar), factory-applied epoxy, pure aluminum, or asphalt coating. Acrylic paint, polyester paint, field-applied, and Galvalume coatings are not acceptable. Paint/coat the galvanized surfaces as described in Ecology Publication # 08-10-025.
- Treat runoff from roofs to the appropriate level. The facility may use Enhanced Treatment BMPs as described in Volume I. Some facilities regulated by the Industrial Stormwater General Permit may have requirements that cannot be achieved with Enhanced Treatment BMPs. In these cases, additional treatment measures may be required. A treatment method for meeting stringent requirements such as Chitosan-Enhanced Sand Filtration may be appropriate.

A7.10 Urban Streets

Description of Pollutant Sources: Streets can be the sources of vegetative debris, paper, fine dust, vehicle liquids, tire wear residues, heavy metals (lead and zinc), soil particles, ice control salts, domestic wastes, lawn chemicals, and vehicle combustion products. Street surface contaminants have been found to contain significant concentrations of particle sizes less than 250 microns (Sartor and Boyd 1972).

Pollutant Control Approach: Conduct efficient street sweeping where and when appropriate to minimize the contamination of stormwater. Do not wash street debris into storm drains.

Suggested BMPs

• For maximum stormwater pollutant reductions on curbed streets and high volume parking lots, use efficient vacuum sweepers.

Note: High-efficiency street sweepers utilize strong vacuums and the mechanical action of main and gutter brooms combined with an air filtration system that only returns clean air to the atmosphere (i.e., filters very fine particulates). They sweep dry and use no water since they do not emit any dust.

High-efficiency vacuum sweepers have the capability of removing 80 percent or more of the accumulated street dirt particles whose diameters are less than 250 microns (Sutherland 1998). This assumes pavements under good condition and reasonably expected accumulation conditions.

• For moderate stormwater pollutant reductions on curbed streets, use regenerative air sweepers or tandem sweeping operations.

Note: A tandem sweeping operation involves a single pass of a mechanical sweeper followed immediately by a single pass of a vacuum sweeper or regenerative air sweeper.

- A regenerative air sweeper blows air down on the pavement to entrain particles and uses a return vacuum to transport the material to the hopper.
- These operations usually use water to control dust. This reduces their ability to pick up fine particulates.

These types of sweepers have the capability of removing approximately 25 to 50 percent of the accumulated street dirt particles whose diameters are less than 250 microns (Sutherland 1998). This assumes pavements under good conditions and typical accumulation conditions.

• For minimal stormwater pollutant reductions on curbed streets, use mechanical sweepers.

Note: The industry refers to mechanical sweepers as broom sweepers. They use the mechanical action of main and gutter brooms to throw material on a conveyor belt that transports it to the hopper.

• These sweepers usually use water to control dust. This reduces their ability to pick up fine particulates.

Mechanical sweepers have the capability of removing only 10 to 20 percent of the accumulated street dirt particles whose diameters are less than 250 microns (Sutherland 1998). This assumes pavements under good condition and the most favorable accumulation conditions.

- Conduct vacuum sweeping at optimal frequencies. Optimal frequencies are those scheduled sweeping intervals that produce the most cost-effective annual reduction of pollutants normally found in stormwater and can vary depending on land use, traffic volume, and rainfall patterns.
- Train operators in those factors that result in optimal pollutant removal. These factors include controlling sweeper speed, brush adjustment and rotation rate, sweeping pattern, maneuvering around parked vehicles, and interim storage and disposal methods.
- Consider the use of periodic parking restrictions in low to medium density single-family residential areas to ensure the sweeper's ability to sweep along the curb unimpeded by parked vehicles.
- Establish programs for prompt vacuum sweeping, removal, and disposal of debris from special events that will generate higher than normal loadings. This includes leaf-fall during the autumn.
- Disposal of street sweeping solids must comply with "Recommendations for Management of Road maintenance materials" described in Appendix IV-C of this volume.
- Inform citizens about the importance of eliminating yard debris, oil, and other wastes in street gutters in order to reduce street pollutant sources.

A7.11 Railroad Yards

Description of Pollutant Sources: Pollutant sources can include drips/leaks of vehicle fluids onto the railroad bed; human waste disposal; litter; locomotive/railcar/equipment cleaning; fueling; outside material storage; the erosion and loss of soil particles from the railroad bed; maintenance and repair activities at railroad terminals, switching yards, and maintenance yards; and herbicides used for vegetation management.

Waste materials can include waste oil, solvents, degreasers, antifreeze solutions, radiator flush, acids, brake fluids, soiled rags, oil filters, sulfuric acid and battery sludges, machine chips with residual machining oil, and toxic fluids/solids lost during transit. Potential pollutants include oil and grease, total suspended solids, oxygen demanding substances (i.e., BOD and COD), organics, pesticides, and metals.

Pollutant Control Approach: Apply good housekeeping and preventive maintenance practices to control leaks and spills of liquids in railroad yard areas.

- Implement the applicable BMPs in this volume depending on the pollution generating activities/sources at a railroad yard facility.
- Do not allow discharge to outside areas from toilets while a train is in transit. Use pump out facilities to service these units.
- Use drip pans at hose/pipe connections during liquid transfer and other leak-prone areas
- When undergoing routine maintenance, discharge locomotive cooling systems only after the locomotive has stopped and at a location where the coolant can be collected, managed, and then disposed of properly.
- During maintenance do not discard debris or waste liquids along the tracks or in railroad yards.
- Handle wastes generated from large-scale equipment cleaning, such as locomotive, track equipment, or axle cleaning operations, properly to avoid harming the environment and to comply with state and federal environmental regulations.
- Store any metal scrap generated from metal punching or other mechanical operations out of contact with stormwater. For larger metal scrap, see suggested BMPs below.
- Do not dump, drain, or allow the discharge of any water-based coolant from multi-punch presses into storm drains.
- Place track mats under each rail/flange lubricator that is in service where track mats can be safely installed and maintained without danger to rolling stock or personnel.

- Select cost-effective rail/flange lubricant that provides safe and effective rail operation while considering adverse environmental impact. Consider both the chemical composition of the lubricant and the likelihood of transfer off of the rail during rain events.
- Inspect and replace track mats, as necessary. Routinely inspect all track mats for tears or saturation, and replace as necessary.
- Install spill containment pans/trays or track mat at designated locomotive and railcar maintenance facilities and fixed fueling areas, to reduce environmental impacts form potential spills under locomotives and other track equipment. Direct spill containment pans/trays to an oi/water separator where feasible for treatment or collect spilled chemicals for proper disposal.
- During locomotive fueling operations use drip pans or secondary containment to capture any fuel or oil seepage.
- Install track mats at designated Engine Tie-Up and/or outdoor locomotive parking locations (e.g., service tracks) located in SWPPP permitted areas where locomotives are unattended and idle for extended periods of time.
- Do not conduct heavy/major locomotive engine repairs on the rail line. Conduct heavy/major engine repairs at an established railroad maintenance facility.
- Store creosote-treated railroad ties in locations that reduce the potential to impact stormwater runoff.
- <u>In areas subjected to leaks/spills of oils or other chemicals, convey</u> <u>stormwater to appropriate treatment</u> such as a sanitary sewer (if approved by LOTT Alliance Industrial Pretreatment Program at (360) 528-5708), to an API or coalescent plate oil/water separator for floating oils, or other appropriate treatment BMP (as approved by Thurston County). See Volume V.

- At each rail/flange lubricator that is in service use rain sensors to adjust the lubrication cycle accordingly to limit the amount of lubricant exposed to stormwater.
- Store large metal scrap and materials that cannot be stored in covered areas because of their size, volume, and/or weight (for example rail and tie plates) in locations where stormwater runoff is managed, controlled, and directed to a Runoff Treatment BMP that meets the Enhanced Treatment Performance Goal.

A7.12 Maintenance of Public and Utility Corridors and Facilities

Description of Pollutant Sources: Corridors and facilities at petroleum product, natural gas, and water pipelines and electrical power transmission corridors and rightsof-way can be sources of pollutants, such as herbicides used for vegetation management and eroded soil particles from unpaved access roads. At pump stations, waste materials generated during maintenance activities may be temporarily stored outside. Additional potential pollutant sources include the leaching of preservatives from wood utility poles, PCBs in older transformers, water that is removed from underground transformer vaults, and leaks/spills from petroleum pipelines. The following are potential pollutants: oil and grease, total suspended solids, BOD organics, PCBs, pesticides, and heavy metals.

Pollutant Control Approach: Implementation of spill control plans as well as control of fertilizer and pesticide applications, soil erosion, and site debris that can contaminate stormwater.

- Implement BMPs included in Chapter 4, A.6 Landscaping and Lawn/Vegetation Management and in Chapter 7, Section 7.2, R.6 Pesticide Regulations.
- When removing water or sediments from electric transformer vaults, determine the presence of contaminants before disposing of the water and sediments. This includes inspecting for the presence of oil or sheen, and determining from records or testing if the transformers contain PCBs. If records or tests indicate that the sediment or water are contaminated above applicable levels, manage these media in accordance with applicable federal and state regulations, including the federal PCB rules (40 CFR 761) and the state MTCA cleanup regulations (Chapter 173-340 WAC). Water removed from the vaults can be discharged in accordance with the federal 40 CFR 761.79, and state regulations (Chapter 173-201A WAC and Chapter 173-200 WAC), or via the sanitary sewer if the requirements, including applicable permits, for such a discharge are met. (See also Chapter 7, Section 7.2-R2.)
- Within utility corridors, prepare maintenance procedures and an implementation schedule that provides for vegetative, gravel, or equivalent cover that minimizes bare or thinly vegetated ground surfaces within the corridor to prevent the erosion of soil.
- Provide maintenance practices to prevent stormwater from accumulating and draining across and/or onto roadways. Convey stormwater through roadside ditches and culverts. The road should be crowned, outsloped, water barred, or otherwise left in a condition not conducive to erosion. Appropriately maintaining grassy roadside ditches discharging to surface

waters is an effective way of removing many pollutants associated with sediments carried by stormwater.

- Maintain ditches and culverts at an appropriate frequency to ensure that plugging and flooding across the roadbed, with resulting overflow erosion, does not occur.
- Apply the appropriate BMPs from Section A4 of this volume, Storage Activities, for the storage of waste materials that can contaminate stormwater.

Suggested BMPs

- When selecting utility poles for a specific location, consider the potential environmental effects of the pole or poles during storage, handling, and end-use, as well as its cost, safety, efficacy, and expected life. Use wood products treated with chemical preservatives made in accordance with generally accepted industry standards such as the American Wood Preservers Association Standards. Consider alternative materials or technologies if placing poles in or near an environmentally sensitive area, such as a wetland or a drinking water well, Alternative technologies include poles constructed with material(s) other than wood, such as fiberglass composites, metal, or concrete. Consider other technologies and materials, such as sleeves or caissons for wood poles, when they are determined to be practicable and available.
- As soon as practicable, remove all litter from wire cutting/replacing operations,
- Implement temporary erosion and sediment control in areas cleared of trees and vegetation and during the construction of new roads.

A7.13 Maintenance of Roadside Ditches

Description of Pollutant Sources: Common road debris including eroded soil, oils, vegetative particles, and heavy metals can be sources of stormwater pollutants.

Pollutant Control Approach: Maintain roadside ditches to preserve the condition and capacity for which they were originally constructed, and to minimize bare or thinly vegetated ground surfaces. Maintenance practices should provide for ESC (refer to Activity <u>A3.6</u> Landscaping and Lawn/Vegetation Management).

- Inspect roadside ditches regularly to identify sediment accumulations and localized erosion.
- Clean ditches on a regular basis, as needed. Keep ditches free of rubbish and debris.
- Vegetation in ditches often prevents erosion and cleanses runoff waters. Remove vegetation only when flow is blocked or excess sediments have accumulated. Conduct ditch maintenance (seeding, fertilizer application, harvesting) in late spring and/or early fall, where possible. This allows vegetative cover to be re-established by the next wet season, thereby minimizing erosion of the ditch as well as making the ditch effective as a biofilter.
- In the area between the edge of the pavement and the bottom of the ditch, commonly known as the "bare earth zone," use grass vegetation, wherever possible. Establish vegetation from the top of the slope of the ditch as long as it does not block the sightlines required for safety.
- Maintain diversion ditches on top of cut slopes constructed to prevent slope erosion by intercepting surface drainage to retain their diversion shape and capability.
- Do not leave ditch cleanings on roadway surfaces. Sweep, collect, and dispose of dirt and debris remaining on the pavement at the completion of ditch cleaning operations as described below:
 - Consider screening roadside ditch cleanings not contaminated by spills or other releases and not associated with a stormwater treatment system such as a bioswale to remove litter. Separate screenings into soil and vegetative matter (leaves, grass, needles, branches, etc.) categories. Compost or dispose of the vegetative matter in a municipal waste landfill. Consult the Thurston County Health Department 360-867-2664 to discuss use or disposal options for the soil portion. For more information, please see "Recommendations for Management of Material Generated from Road Maintenance Activities," in Appendix IV-C of this volume.

- Roadside ditch cleanings contaminated by spills or other releases known or suspected to contain dangerous waste must be handled following the Dangerous Waste Regulations (Chapter 173-303 WAC). If testing determines it is not dangerous waste but contaminants are present, consult with the Thurston County Health Department 360-867-2664 for disposal options.
- Inspect culverts on a regular basis for scour or sedimentation at the inlet and outlet, and repair as necessary. Give priority to those culverts conveying perennial and/or salmon-bearing streams and culverts near streams in areas of high sediment load, such as those near subdivisions during construction.

 Install biofiltration swales, bioinfiltration swales and filter strips to treat roadside runoff wherever practicable and use engineered topsoils wherever necessary to maintain adequate vegetation (CH2M Hill 2000). Consider using the Media Filter Drain BMP where adequate slope and level of traffic permit it. These systems can improve infiltration and stormwater pollutant control upstream of roadside ditches. See Volume V of this manual, Runoff Treatment BMPs, for additional information about biofiltration swales, bioinfiltration swales, filter strips, and media filter drains.

A7.14 Maintenance of Stormwater Drainage and Treatment Facilities

Description of Pollutant Sources: Facilities include roadside catch basins on arterials and within residential areas, conveyance systems, detention facilities such as ponds and vaults, oil and water separators, bioretention, biofilters, settling basins, infiltration systems, and all other types of stormwater treatment systems presented in Volume V. Oil and grease, hydrocarbons, debris, heavy metals, sediments, and contaminated water are found in catch basins, oil and water separators, settling basins, etc.

Pollutant Control Approach: Provide maintenance and cleaning of debris, sediments, and oil from stormwater collection, conveyance, and treatment systems to obtain proper operation.

Required BMPs

Maintain stormwater treatment facilities per the operations and maintenance (O&M) procedures presented in Volume V, Appendix V-C, in addition to the following BMPs:

- Inspect and clean treatment BMPs, conveyance systems, and catch basins (Figure IV 4.23) as needed, and determine whether improvements or maintenance are needed.
- Promptly repair any deterioration threatening the structural integrity of stormwater facilities. These include replacement of clean-out gates, catch basin lids, and rock in emergency spillways.
- Ensure adequacy of storm sewer capacities and prevent heavy sediment discharges to the storm sewer system, by methods like those found in C-220, Storm Drain Inlet Protection.
- Regularly remove debris and sludge from BMPs used for flow control, treatment, etc. and truck to an appropriate local or state government approved disposal site.
- Clean catch basins in accordance with the information provided in Volume V, Appendix V-C. Additional information is also included in Chapter 5 of this volume, BMP S.9 Cleaning Catch Basins.
- Clean woody debris in a catch basin as frequently as needed to ensure proper operation of the catch basin.
- Install monuments on storm drain inlet rims that state: "Dump No Waste -Drains to Groundwater," "Streams," "Lakes," where possible (Figure IV -4.24).

Figure IV - 4.23 Catch Basin Cleaning with a Vacuum Truck.

Figure IV - 4.24 "No Dumping" Storm Drain Button.

• Disposal of sediments and liquids from the catch basins must comply with "Recommendations for Management of Road maintenance materials" described in Appendix IV-C of this volume.

- Eliminate illicit connections to the stormwater drainage system. See BMP S.1 in Chapter 5 for details on detecting and eliminating these connections.
- Select additional applicable BMPs from this chapter depending on the pollutant sources and activities conducted at the facility. Those BMPs include:
 - <u>A4.7</u> Storage of Liquid, Food Waste, or Dangerous Waste Containers
 - <u>A6.3</u> Soil ESC at Industrial Sites
 - \circ <u>A7.10</u> Urban Streets
 - <u>A7.15</u> Spills of Oil and Hazardous Substances.

A7.15 Spills of Oil and Hazardous Substances

Description of Pollutant Sources: Federal law requires owners or operators of facilities engaged in drilling, producing, gathering, storing, processing, transferring, distributing, refining or consuming oil and/or oil products to have a Spill Prevention and Emergency Cleanup Plan (SPECP). The SPECP is required if the above ground storage capacity of the facility is 1,320 gallons or more of oil, or any single container with a capacity in excess of 660 gallons and which, due to their location, could reasonably be expected to discharge oil in harmful quantities, as defined in 40 CFR Part 110, into or upon the navigable waters of the United States or adjoining shorelines {40 CFR 112.1(b)}. Onshore and offshore facilities, which, due to their location, could not reasonably be expected to discharge oil into or upon the navigable waters of the United States or adjoining shorelines are exempt from these regulations {40 CFR 112.1(1)(i)}.

State Law requires owners of businesses that produce dangerous wastes to have a SPECP. These businesses should refer to Chapter 7, Section 7.2, R-2. The federal definition of oil is oil of any kind or any form, including, but not limited to, petroleum, fuel oil, sludge, oil refuse, and oil mixed with wastes other than dredged spoil.

Pollutant Control Approach: Maintain, update, and implement a Spill Prevention and Emergency Cleanup Plan.

- Prepare a SPECP, which includes:
 - A description of the facility including the owner's name and address.
 - The nature of the activity at the facility.
 - The general types of chemicals used or stored at the facility.
 - A site plan showing the location of storage areas for chemicals, the locations of storm drains, the areas draining to them, and the location and description of any devices to stop spills from leaving the site such as positive control valves.
 - Cleanup procedures.
 - Notification procedures to be used in the event of a spill, such as notifying key personnel. Agencies such as Ecology, Thurston County Fire Marshal, the local Fire District (call 911), Washington State Patrol, Thurston County, U.S. Coast Guard, and the U.S. EPA shall be notified.
 - The name of the designated person with overall spill cleanup and notification responsibility.

- Train key personnel in the implementation of the SPECP. Prepare a summary of the plan and post it at appropriate points in the building, identifying the spill cleanup coordinators, location of cleanup kits, and phone numbers of regulatory agencies to contact in the event of a spill.
- Update the SPECP regularly.
- Immediately notify Ecology and Thurston County if a spill may reach sanitary or storm sewers, groundwater, or surface water, in accordance with federal and Ecology spill reporting requirements.
- Immediately cleanup spills. Do not use emulsifiers for cleanup unless there is an appropriate disposal method for the resulting oily wastewater Do not wash absorbent material down a floor drain or into a storm sewer.
- Locate emergency spill containment and cleanup kit(s) in high potential spill areas. The contents of the kit shall be appropriate for the type and quantities of chemical liquids stored at the facility (Figure IV 4.25).

(Photo courtesy of Seattle Public Utilities)

IV - Figure 4.25 Example of Spill Kit Contents.

Suggested BMP

• Spill kits should include appropriately lined drums, absorbent pads, and granular or powdered materials for neutralizing acids or alkaline liquids where applicable. In fueling areas: package absorbent material in small bags for easy use and make available small drums for storage of

absorbent and/or used absorbent. Deploy spill kits in a manner that allows rapid access and use by employees.

A7.16 Streets and Highways

Description of Pollutant Sources: These BMPs apply to the maintenance and deicing/anti-icing of streets and highways. Deicing products can be conveyed during storm events to inlets/catch basins or to receiving waters after application. Leaks and spills of these products can also occur during their handling and storage. Equipment and processes used during maintenance can contribute pollutants such as oil and grease, suspended solids, turbidity, high pH, and metals.

Pollutant Control Approach: Apply good housekeeping practices, preventative maintenance, properly train employees, and use materials that cause less adverse effects on the environment.

Required BMPs

Deicing and Anti-Icing Operations

- Adhere to manufacturer's guidelines and industry standards of use and application.
- Store and transfer de and anti-icing materials on impervious containment pads, or an equivalent spill/leak containment area in accordance with A4.1 Storage or Transfer (Outside) of Solid Raw Materials, By-Products, or Finished Products in this volume.
- Sweep/cleanup accumulated de-icing and anti-icing materials and grit from roads as soon as possible after the road surface clears.
- Minimize use in areas where runoff or spray from the roadway immediately enters sensitive areas such as fish-bearing streams.

Maintenance Operations

- Use drip pans or absorbents wherever concrete, asphalt, asphalt emulsion, paint product, and drips are likely to spill, such as beneath discharge points from equipment.
- Cover and contain nearby storm drains to keep runoff from entering the drainage system.
- Collect and contain all solids, slurry, and rinse water. Do not allow these to enter gutters, storm drains, or drainage ditches or onto the paved surface of a roadway or driveway.

- Designate all fueling equipment in accordance with A2.4 Mobile Fueling of Vehicles and Heavy Equipment.
- Do not use diesel fuel for cleaning or prepping asphalt tools and equipment.
- Sweep areas frequently as needed. Collect all loose aggregate and dust for disposal. Do not hose down areas into storm drains.
- Store all fuel, paint, and other products in secondary containment.
- Conduct paint striping operations during dry weather.

- Where feasible and practicable, use roadway deicing chemicals that cause the least adverse environmental impact. Apply only as needed using minimum quantities. Consider the Pacific Northwest Snowfighters Qualified Products List when selecting roadway deicers and anti-icers.
- Intensify roadway and drainage structure cleaning in early spring to help remove particles from road surfaces.
- Include limits on toxic metals in the specifications for de/anti-icers.
- Install catch basin inserts to collect excess sediment and debris as necessary. Inspect and maintain catch basin inserts to ensure they are working correctly.
- Research mixtures (e.g. corrosion inhibitors, surfactants) to determine what additional pollutants may be an issue. Verify with Thurston County Water Resources Division at 360-754-4681 if there are any restrictions on admixtures.

A7.17 Maintenance and Repair of Vehicles and Equipment

Description of Pollutant Sources: Pollutant sources include parts/vehicle cleaning, spills/leaks of fuel and other liquids, replacement of liquids, outdoor storage of batteries/liquids/parts, and vehicle parking.

Pollutant Control Approach: Control of leaks and spills of fluids using good housekeeping and cover and containment BMPs.

Required BMPs

• Inspect all incoming vehicles, parts, and equipment stored temporarily outside for leaks.

- Use drip pans or containers under parts or vehicles that drip or that are likely to drip liquids, such as during dismantling of liquid containing parts or removal or transfer of liquids. Inspect drip pans regularly to prevent accumulation of stormwater or other liquids, and dispose of any accumulated liquid appropriately.
- Remove batteries and liquids form vehicles and equipment in designated areas designed to prevent stormwater contamination. Store cracked batteries in a covered non-leaking secondary containment system.
- Remove liquids from vehicle retire for scrap.
- Empty oil and fuel filters before disposal. Provide for proper disposal of used oil and fuel.
- Do not pout/convey washwater, liquid waste, or other pollutants into storm drains or to surface water. Check with the local sewer authority for approval to convey water to a sanitary sewer.
- Do not connect maintenance and repair shop floor drains to storm drains or to surface water.
- To allow for snowmelt during the winter, install a drainage trench with a sump for particulate collection. Use the drainage trench for draining the snowmelt only. Do not discharge any vehicular or shop pollutants to the trench drain.
- Conduct all maintenance and repair of vehicles and equipment in a building, or other covered impervious containment areas that is sloped to prevent run-on of uncontaminated stormwater and runoff of contaminated water.
- Operators may conduct maintenance of refrigeration engines in refrigerated trailers in the parking area. Exercise due caution to avoid the release of engine or refrigeration fluids to storm drains or surface water.
- Park large mobile equipment, such as log stackers, in a designated contained area.
- Convey contaminated stormwater runoff from vehicle staging and maintenance areas to a sanitary sewer, if allowed by the local sewer authority, or to an API or CP oil and water separator followed by a Basic Treatment BMP (See Volume 1), applicable filter, or other equivalent oil treatment system.

- Store damaged vehicles inside a building or other covered containment, until successfully removing all liquids.
- Clean parts with aqueous detergent based solutions or non-chlorinated solvents such as kerosene or high flash mineral spirits, and/or use wire brushing or sandblasting whenever practicable. Avoid using toxic liquid cleaners such as methylene chloride, 1, 1, 1-trichloroethane, trichloroethylene or similar chlorinated solvents. Choose cleaning agents that can be recycled.
- Inspect all BMPs regularly, particularly after a significant storm. Identify and correct deficiencies to ensure that the BMPs are functioning as intended.
- Avoid hosing down work areas. Use dry methods for cleaning leaked fluids.
- Recycle greases, used oi, oil filters, antifreeze, cleaning solutions, automotive batteries, hydraulic fluids, transmission fluids, and engine oils. Contact Ecology's Hazardous Waste & Toxics Reduction Program for recommendations on recycling or disposal of waste materials.
- Do not mix dissimilar or incompatible waste liquids stored for recycling.

A7.18 Well, Utility, Directional and Geotechnical Drilling

Description of Pollutant Source: This activity applies to drilling water wells and utilities, environmental protection and monitoring wells, and geotechnical borings that use machinery in the drilling. It does not apply to the use of devices such as hand augers, or for large structural drilling such as drilled shafts.

Drilling activities can expose soil and contaminated soil. These activities may cause the discharge of stormwater contaminated with sediments and other contaminates. This risk increases when drilling in areas with contaminated soils.

Pollutant Control Approach: Reduce sediment runoff from drilling operations.

- When drilling in areas of known or suspected soil contamination, test and characterize soil cuttings and accumulated sediment to determine proper management and disposal methods. If applicable, generator knowledge may be used to characterize the soil cuttings and accumulated sediment.
- Obtain permits for drilling activities and for clearing and grading the access routes and the work site.

- Protect environmentally sensitive areas (streams, wetlands, floodplains, floodways, erosion hazards, and landslide hazards) within the area of influence of the work site.
- Mitigate potential impacts to surrounding areas and/or the drainage system.
- For horizontal directional drilling, take measures to capture and contain drilling fluids and slurry.
- Equip the driller to quickly respond to unusual conditions that may arise.
- Locate and prepare access roadways to minimize the amount of excavation and the potential for erosion.
- Contain accumulated uncontaminated water and sediment on site and pump into a storage tank or direct through a geotextile filtration system (or equivalent system) before discharging to the surrounding ground surface. Contaminants may include, but are not limited to, hydraulic fluids, contaminants in the soil and/or groundwater, polymers, and other drilling fluid additives.
- Keep all sediment-laden water out of storm drains and surface waters. If sediment-laden water does escape from the immediate drilling location, block flow to any nearby waterways or catch basins using fabric, inlet protections, sandbags, erosion fences, or other similar methods. Immediately notify Ecology and the Thurston County Water Resources Division if sedimentladen water impacts the storm sewer system or surface waters.
- Divert any concentrated flows of water into the site using sandbags or check dams up-slope from the site.
- Dispose of soil cuttings and accumulated sediment appropriately. If cuttings or other soils disturbed in the drilling process are to be temporarily stockpiled on site, they must be covered and surrounded by a berm or filter device. See A4.1 Storage or Transfer (Outside) of Solid Raw materials, Byproducts, or Finished Products.
- Stabilize exposed soils at the end of the job using mulch or other erosion control measures. See A6.3 Soil Erosion and Sediment Control at Industrial Sites.
- Contain spent drilling slurry on site and allow it to dewater, or haul to an appropriate, approved disposal site.
- Restore disturbed areas with mulch (see BMP C121: Mulching) and seeding or hydroseeding (see BMP C120: Temporary and Permanent Seeding).

A7.19 Roof Vents

Description of Pollutant Sources: This activity applies to processes that vent emissions to the roof and/or the accumulation of pollutants on roofs. Processes of special concern are stone cutting, metal grinding, spray painting, painting stripping, galvanizing and electroplating. Pollutants from these processes may build up on roofs and may pollute stormwater roof runoff.

Pollutant Control Approach: Evaluate the potential sources of stormwater pollutants and apply source control BMPs where feasible.

- Identify processes that are vented and may contribute pollutants to the roof. Pollutants of concern include and are not limited to:
 - Metal dust
 - Grease from food preparation
 - \circ Solvents
 - o Hydrocarbons
 - o Fines
 - o Stone dust
- Look for chemical deposition around vents, pipes, and other surfaces.
- Install and maintain appropriate source control measures such as air pollution control equipment (filters, scrubbers, and other treatment).
 - Check that your scrubber solution is appropriate for the chemistry of the fumes.
 - \circ Install vent covers and drip pans where there are none.
 - Prevent leaks in pipefittings and containment vessels with routine maintenance.
- Consider instituting operational or process changes to reduce pollution.
- If proper installation and maintenance of air pollution control equipment does not prevent pollutant fallout on your roof, additional treatment of the roof runoff may be necessary.

- Install/provide appropriate devices for roof runoff before it is discharged off site. This may include approved water quality treatment BMPs or structural stormwater treatment systems.
- Maintain air filters and pollution control equipment on a regular basis to ensure they are working properly. (The smell of odors from outside the building indicates that the pollution control equipment may need maintenance or evaluation.)
- When cleaning accumulated emissions from roof tops, collect the washwater and loose materials using a sump pump, wet vacuum or similar device. The collected runoff may be discharge to the sanitary sewer after approved by the local sewer authority, or have a waste disposal company remove it.

Chapter 1 - General Source Control Best Management Practices

This chapter describes source control BMPs recommended in Chapters 2 and 4, organized by BMP type.

This chapter describes BMPs common to several activities described in Chapters 2 and 4. This chapter organizes BMPs by general activity—for example, BMP S.2 describes proper waste disposal applicable to several activities, such as engine repair (A 2.3), concrete mixing (A 3.1), and building demolition (A 5.1).

1.1 Index of BMP Descriptions

BMP	BMP Categories
<u>S.1</u>	Eliminate Illicit Stormwater Drainage System Connections
<u>S.2</u>	Dispose of Collected Runoff and Waste Materials Properly
<u>S.3</u>	Connect Process Water Discharges to a Sanitary Sewer, Holding Tank, or Water Treatment System
<u>S.4</u>	Cover the Activity with a Roof or Awning
<u>S.5</u>	Cover the Activity with an Anchored Tarpaulin or Plastic Sheet
<u>S.6</u>	Pave the Activity Area and Slope to a Sump or Holding Tank
<u>S.7</u>	Surround the Activity Area with a Curb, Dike, or Berm or Elevate the Activity
<u>S.8</u>	Implement Integrated Pest Management (IPM) Measures
<u>S.9</u>	Clean Catch Basin
S.10	Labeling Storm Drain Inlets On Your Property
S.11	Color Events
S.12	Goose Waste

1.2 Source Control BMPs

S.1 Eliminate Illicit Storm Drain Connections

Many businesses and residences hooked internal building drains, sump overflows, process wastewater discharges, and even sanitary sewer and septic system pipes to the storm drain in the past, allowing a variety of pollutants to flow directly to receiving waters instead of the sanitary sewer or septic system. Frequently, these connections are unknown to the current owner, and do not appear on any plans for the site. Because of the pollution potential these connections represent, the Environmental Protection Agency, under the mandate of the NPDES stormwater permits, has made elimination of illegal connections a top priority.

All businesses and residences in Thurston County must examine their plumbing systems to identify any potential illicit connections. Start with an examination of the site plans, to better understand what piping systems were initially installed, making piping that does not appear on the plan a priority for investigation. Wherever toilets, sinks, appliances, showers and bathtubs, floor drains, industrial process waters, or other indoor activities are connected to the stormwater drainage system, immediately reroute them to the sanitary or septic system, holding tanks, or process treatment system.

Industries and businesses that have been issued an NPDES Baseline General Permit by Ecology, and are allowed specific discharges under that permit are exceptions to this requirement. Please refer to R.4 in Chapter 7 to determine if your type of business is required to have a NPDES permit.

If sanitary facilities (such as toilets) are connected to the stormwater drainage system, you must obtain a permit from your local sewer utility and reroute them to the sanitary sewer. If sanitary service is not available, contact the Thurston County Public Health and Social Services Department at (360) 867-2673 for septic permits.

Dye testing with a non-toxic dye is one way to determine where a pipe or structure drains if not obvious by observations or on plans. The dye is put into the structure and flushed with some water. Observations are then made at ends-of-pipes, drainage ditches, catch basins, and manholes to look for the color coming through. Contact Thurston County Department of Resource Stewardship, Water Resources Division (360) 754-4681 if you need assistance in locating structures adjacent to your property.

Smoke testing can also help detect illegal connections and is best done by qualified personnel. To conduct smoke testing, shut off all indoor discharges, place a smoke bomb or other smoke-generating device in a storm drain manhole, and force air in after it. Station personnel at each suspect drain location to observe if smoke is coming out. Identify smoking drains for future rerouting.

Drains which are found to connect to the stormwater drainage system must either be permanently plugged or disconnected and rerouted as soon as possible. Plug unused drains with concrete or similar permanent materials. If a drain pipe is to be rerouted and a sanitary sewer services the property, then the local sewer provider must be contacted. Restrictions on certain types of discharges, particularly industrial process waters, may require pretreatment of discharges before entering the sanitary sewer. It is the responsibility of the property owner or business operator to follow through on rerouting illicit storm drainage connections to the sanitary sewer.

If the property is not served by a sanitary sewer, alternate measures will be necessary. If the discharge is simply domestic waste, a septic system may be feasible. If it is necessary to install a septic system, the proper permits will need to be obtained from the Thurston County Public Health and Social Services Department at (360) 867-2673. If the discharge is anything other than domestic waste, then a holding tank or on-site treatment will be necessary. Contact LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider for specific directions for installation and disposal.

S.2 Dispose of Collected Runoff and Waste Materials Properly

Every business and residence in Thurston County must dispose of solid and liquid wastes and contaminated stormwater properly. There are generally four options for disposal depending on the type of materials. These options include:

- Sanitary sewer and septic systems
- Recycling facilities
- Municipal solid waste disposal facilities
- Hazardous waste treatment, storage, and disposal facilities.

Many liquid wastes and contaminated stormwater (depending on the pollutants and associated concentrations present) may be put into the sanitary sewer, subject to approval by the LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider.

If wastes cannot be legally discharged to a sanitary sewer or septic system, one of the other three disposal options must be used. Sumps or holding tanks may be useful for storing liquid wastes temporarily. The contents must be disposed of in the sanitary sewer or at a dangerous waste facility depending on the nature of the waste.

Recycling facilities are a recommended option for many commercial and household items, including used oils, used batteries, old equipment, glass, some plastics, metal scrap materials, solvents, paints, wood and land clearing wastes, and various other solid wastes. Solid wastes that cannot be recycled and that are not hazardous must be disposed of at a licensed municipal solid waste disposal facility. The list in Chapter 8 of this volume has the phone numbers and addresses of these facilities in Thurston County.

Dangerous and hazardous wastes must be properly transported to an appropriate hazardous waste treatment, storage, and disposal facility. Included in Chapter 8 is a list of companies dealing in these activities.

Costs of disposal vary considerably from option to option. Especially in the case of dangerous wastes, different types of wastes should be kept segregated. Disposal costs are usually determined by the most hazardous or difficult to dispose of waste present, so you can keep your costs down by not mixing wastes. The Thurston County Department of Public Works (360) 867-2300 can help you determine the best disposal options for your waste.

S.3 Connect Process Water Discharges to a Sanitary Sewer, Holding Tank, or Wastewater Treatment System

This BMP is a core requirement for all industrial and commercial activities that generate contaminated process wastewater, such as washing activities, composting activities, and production and processing activities. The water used in these activities cannot drain to surface waters or groundwater untreated. Process water must drain to a sanitary sewer, holding tank, or wastewater treatment system, or it can be recycled.

The first priority for these businesses is discharge of process water to a sanitary sewer via a new or existing plumbing connection. In order to connect to the sewer, you must contact LOTT Alliance Industrial Pretreatment Program at (360) 528-5708 or your local sewer service provider for information on permits for the connection. Pretreatment of industrial wastewaters will often be necessary before it is allowed to discharge to the sewer, and more information can be obtained by calling the number above.

If a sanitary sewer is not available, or if it is determined that a discharge connection is not allowed, the only remaining options are holding tanks or an on-site wastewater treatment facility. Consideration should be given to using a holding tank for used process water if the volume of process water generated by the activity is not excessive. The contents of the holding tank must be pumped out or drained before the tank is full and disposed of properly (see BMP S.2 in this chapter for information on disposal options). If a sanitary sewer connection cannot be made and a holding tank is not used, a wastewater treatment facility must be constructed on the site. This treatment facility must be designed to receive and effectively treat all discharges of process water from the business. Ecology must be contacted for approval of such a facility, since discharges from the treatment facility will enter surface waters or be spread on land. See Chapter 7 for Ecology's requirements for discharges of process waters.

For all types of process water discharges the following measures are required if the activity is to remain uncovered. Define a designated area for the activity and provide a mechanism for prevention of stormwater run-on into the activity area. This can be a curb, dike, or berm (see BMP S.7 in this chapter for more information) or similar effective means to prevent run-on. In this manner, only the precipitation that falls within the activity area is discharged and/or treated along with the activity process water. The designated area should be paved and sloped to a central collection drain. The collection drain must connect to the sanitary sewer (with pretreatment if required), the on-site holding tank, or the on-site treatment facility, whichever method is selected.

This process water BMP can be made more effective if the activity is covered, thus reducing the total amount of water to be treated.

S.4 Cover the Activity with a Roof or Awning

Not every activity can or needs to be located inside a building. In many cases, a simple roof or awning will protect the activity from coming into contact with stormwater, and usually at a lower cost than a complete building. If you do decide to build one of these structures, you will need to obtain permits from Thurston County Development Services

(360) 786-5490. They will also be able to help you with fire code requirements and zoning code provisions.

The roof structure can be designed in several ways. One option is a lean-to type of structure, where sheets of corrugated steel, fiberglass, aluminum, or similar impermeable material are attached to the wall of a building and are supported by sturdy poles. Similarly, if there is no building to attach to, roofing materials can be sufficiently supported at all four corners as a standalone cap, or a waterproof tent canopy can be used.

The area of the roof cover should be sufficient to prevent any precipitation from reaching the covered materials. An example of this type of structure is provided in Figure IV - 5.1.

(Photo courtesy of Seattle Public Utilities) Figure IV - 5.1 Structure Used to Cover Manufacturing Operations.

Another option for covering an activity is to use an overhanging awning of sufficient size to prevent rain from reaching the materials. Many of the building permit, fire code, and zoning requirements will also apply to these structures. An example of an awning cover is shown in Figure IV - 5.2.

Figure IV - 5.2 Loading Docks with an Overhang to Prevent Material Contact with Rainwater.

Activities such as fueling operations may be more conveniently covered by an islandtype overhanging roof. This type of roof is supported by columns along the center of the structure rather than at the corners, enabling vehicles easy access underneath while still providing sufficient protection from rain. An example of this type of roof structure is shown in Figure IV - 5.3.

Figure IV - 5.3 Roof at Fueling Island to Prevent Stormwater Run-on.

Note that floating fuel stations (such as some used for refueling boats) cannot be covered, according to the fire code.

The particular roof cover option used at a given site is subject to the site layout and available space, affordability, and limitations imposed by other regulations. Structural cover options other than those given above can be used if they perform the same function. This BMP should usually be implemented in conjunction with sump or sanitary sewer drains and provisions for prevention of stormwater run-on into the covered area. BMPs S.6 and S.7 in this chapter present information on sump installation and run-on prevention.

S.5 Cover the Activity with an Anchored Tarpaulin or Plastic Sheet

Some activities, such as stockpiling of raw materials, can be effectively covered with a sturdy tarpaulin or heavy plastic sheet made of impermeable material. Weights such as bricks, tires, or sandbags should be used to anchor the cover in place. Care should be taken to ensure that the tarpaulin or sheet covers the activity completely and that stormwater run-on does not penetrate significantly under the cover. If several sheets are used to form a cover, the sheets should be tethered together or laid in an overlapping manner. If necessary, pins or stakes should be used to anchor the tarpaulin to the ground. The tarpaulin must be inspected daily to ensure that no holes or gaps are present in the tarpaulin coverage. An example of this type of cover is shown in Figure IV - 5.4.

Figure IV - 5.4 Temporary Plastic Sheeting Anchored over Raw Materials Stored Outdoors.

The tarpaulin covering will be easier to keep in place and will last longer if some form of wind protection is possible. Attempts should be made to locate stockpiles adjacent to buildings where winds are reduced, but not in between buildings where a wind tunnel effect can occur.

Tarpaulins are an inexpensive and cost effective BMP for many activities. This BMP can be combined with runoff containment/run-on prevention curbs, dikes, and berms for better effectiveness (see BMP S.7 for more information).

S.6 Pave the Activity Area and Slope to a Sump or Holding Tank

<u>This BMP applies to several activities that cannot be covered effectively</u>. It is particularly suited to activities with the potential for leaks and spills, but that otherwise do not generate excessive amounts of polluted runoff. Examples are storage of liquid chemicals, waste oils, and solvents in portable containers such as drums; loading and unloading of liquids from trucks; and painting, finishing, and coating activities. A sump or holding tank serves to provide spill containment until the liquids can be pumped out and properly disposed of. If the activity produces large amounts of runoff, this BMP will not be very effective because the stray contaminants will overflow the sump or pass through the sump before collection and disposal are possible. To prevent run-on, the area should be enclosed with a berm, curb, or dike. The following implementation information is intended for situations where this BMP can be effective.

A designated activity area should be paved and sloped to drain to a central collection point. A sump, vault, or holding tank should be installed underneath this collection drain. Some materials, such as gasoline, can react with asphalt pavement and break it down, releasing additional pollutants. If the area is not yet paved and materials are present which may react with asphalt, the area must be paved with concrete. If the area is already paved with asphalt, an asphalt sealant can be applied which can aid in preventing pavement degradation. Whichever paving material is used, the paved surface must be free of gaps and cracks.

The sump or holding tank should have a capacity large enough to contain the entire volume of a potential spill. An example of a paved activity area with a sump drain is shown in Figure IV - 5.5.

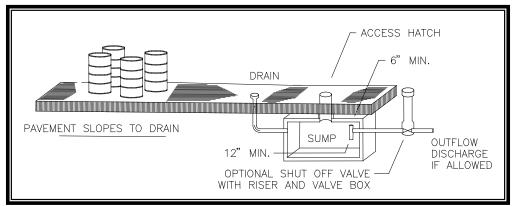


Figure IV - 5.5 Paved Area With Sump Drain.

Wash pads may frequently need to use a sump arrangement like this. To keep disposal costs down, a drain cover, plug, or shutoff valve upstream of the sump should be used at times when the activity is not occurring.

The cost of constructing a sump and the disposal of accumulated contents can be high, so businesses should consider whether other allowable alternative BMPs can be used.

Commercial services that pump sumps and holding tanks are listed in the Yellow Pages of the phone directory under Environmental and Ecological Services or by searching on the internet using key words such as "hazardous waste removal".

BMPs S.4, S.5, and S.7 in this chapter present information on covering activities and run-on prevention.

S.7 Surround the Activity Area with a Curb, Berm, or Dike, or Elevate the Activity

This set of BMP options can be an effective means for prevention of stormwater run-on to an activity area. In addition, a curb, berm, or dike can be used for containment of spills in the activity area, or for containment of contaminated activity runoff. Generally, a containment BMP is most applicable to spill control situations; that is, sites where runoff is relatively clean, but occasional spills may occur. This BMP may be less expensive to implement than paving the activity area and providing proper drainage collection, but can also be more difficult to maintain if stormwater ponding occurs inside a containment dike.

If a curb, dike, or berm is used to prevent stormwater run-on to a covered activity area, and the activity area is paved or otherwise impermeable, the berm should be placed underneath the covering so that rain will not pond inside it. Stormwater run-on can also be prevented by elevating the activity with a platform or other type of pedestal.

Containment may be achieved with concrete curbing, an earthen berm, a tub such as a plastic wading pool, or some other dike material, depending on the activity, its size, and resources available. Activities that require more space and therefore cannot be contained with a tub may need to be surrounded by a curb, dike, or berm. Aboveground storage tanks of liquids, storage of chemicals or wastes in numerous drums, and stockpiling of fertilizer are examples of activities that can be contained effectively in this manner. As the activity area gets larger, containment with an earthen berm can probably be provided less expensively than concrete curbing.

If a curb, berm, or dike is used for runoff containment, and other containment sizing regulations (such as fire codes, Ecology or Thurston County Environmental Health restrictions) do not apply, it should function so that all stormwater runoff from rain events up to the 6-month storm is contained in the immediate activity area until it infiltrates into the ground or is properly disposed of later. This approach is applicable for activities that involve liquid material storage, and that may consequently incur spills. It is also applicable to stockpile areas where runoff is typically polluted with suspended solids. If a stormwater treatment system is presently on site, a valve should be installed in the containment dike so that excess stormwater can be drained out of the activity area and directed to the treatment system. This valve should always be kept closed unless excess stormwater is being discharged, so that any spills that occur within the activity area can be effectively contained.

Difficulties in maintenance may arise with disposal of the captured water on sites without stormwater treatment capability. The collected rainwater may need to be treated before discharge. If the activity is located on impermeable ground, then potentially contaminated water will accumulate within the containment area. If contaminated, this accumulated water cannot simply be drained from the area; it must be collected and disposed of at a licensed disposal facility. During the wet season, this course of action can lead to frequent draining that may prove costly. In addition, some type of monitoring would be needed to determine if ponded water is contaminated. Depending on the monitoring requirements, this can also be very costly.

For storage of small items, the simplest containment device is a tub or wading pool. A plastic child's wading pool may be sufficient for some activities that do not require a lot of space, such as storing painting materials, and temporary storage of wastes in drums. An example of this is shown in Figure IV - 5.6. Make sure the material you are using does not react with the plastic.

(Photo courtesy of Mark Dilley, Interstate Products, Inc.)

Figure IV - 5.6 Temporary Spill Containment.

For larger areas, a containment curb, dike, or berm may be necessary. If an earthen berm is used, it must be seeded with grass or other vegetation so that it does not erode. Sketches of a containment berm are shown in Figure IV - 5.7.

The volume of the containment area shall be the greater of either 110 percent of the volume of the largest tank, or 10% of volume of all tanks if there are multiple tanks

It should be noted that neglect and poor maintenance can render the containment useless. Other BMPs should be considered before containment. Commercial products are available that are a combination containment box/elevated pedestal. These effective devices prevent stormwater run-on by elevating containers off the ground, and allow for collection of spills and drips inside the pedestal box. Similar arrangements can be constructed by hand as well.

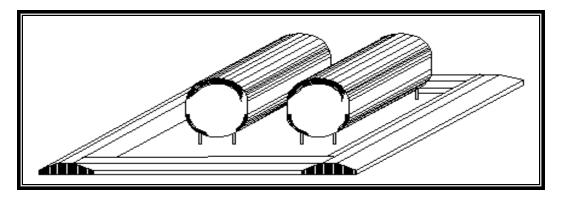


Figure IV - 5.7 Containment Berm Used to Control Liquid-Material Leaks or Spills.

BMPs S.4, S.5, and S.6 in this chapter provide information on covering activities and sump installation.

S.8 Implement Integrated Pest Management Measures

Use of herbicides, fungicides, and rodenticides should always be done with extreme caution, not only because of the potential harm to humans and pets, but also because of the potential harm to fish, wildlife, and our water resources. In light of the toxic nature of these compounds, special attention should be given to pesticide usage in all applications. The discussion below applies more to large-scale pesticide users, but should be considered for backyard applications as well.

Commercial, agricultural, municipal, and other large scale pesticide users, such as golf courses and parks, should adhere to the principles of integrated pest management, a decision-making process for pest management that strives for intelligent, environmentally sound control of pests. It is a systems approach to pest management that combines agronomic, biological, chemical, and genetic information for educated decisions on the type of control to use, the timing and extent of chemical application, and whether non-chemical means can attain an acceptable level of pest control.

Integrated pest management is a preventive measure aimed at knowing the exact pests being targeted for control, the locations and times when pests will pose problems, the level of pest-induced damage that can be tolerated without taking action, the most vulnerable life stage, and control actions that are least damaging to the environment. The major components of integrated pest management are as follows:

- Monitoring and inventory of pest populations
- Determination of pest-induced injury and action levels
- Identification of priority pest problems
- Selection and timing of least toxic management tools
- Site-specific treatment with minimized chemical use
- Evaluation and adjustment of pesticide applications.

Monitoring of pest populations is a key to successful integrated pest management implementation. Pest problems are universally easier to control if the problem can be discovered early. With integrated pest management pesticides are used only as a last resort. Maximization of natural controls, including biological controls and removal of pests by hand, is always the first choice.

More information on integrated pest management is available from the Washington State Department of Agriculture and from the Washington State University Extension Service. Refer to A3.11 for an example of an Integrated Pest Management Program.

S.9 Cleaning Catch Basins

Cleaning catch basins regularly (Figure IV - 5.8) is one of the most important stormwater source control measures that a business can take as they are a last line of defense before runoff enters the stormwater conveyance system.

IV - Figure IV - 5.8 Catch Basin Cleaning with a Vacuum Truck.

Catch basins are typically located under low spots in parking lots, along curbs and road edges, and where storm drain pipes combine flows. Catch basins on the surface collect runoff for storm drains that are typically located directly underneath them. Most catch basins have some storage in the bottom that never drains to an outflow pipe. This permanent storage area is intended to trap sediments, debris, and other particles that can settle out of stormwater, thus preventing clogging of downstream pipes and washing of these solids into receiving waters.

Clean catch basins when the depth of deposits reaches 60 percent of the sump depth as measured from the bottom of basin to the invert of the lowest pipe into or out of the basin. However, in no case should there be less than 6 inches clearance from the debris surface to the invert of the lowest pipe. Some catch basins (for example, WSDOT Type 1L basins) may have as little as 12 inches sediment storage below the invert. These catch basins will need more frequent inspection and cleaning to prevent scouring. Where these catch basins are part of a stormwater collection and treatment system, the system owner/operator may choose to concentrate maintenance efforts on downstream control devices as part of a systems approach. For additional information on the maintenance of catch basins, refer to Volume V, Appendix V-C.

Several companies offer catch basin cleaning services. Pertinent equipment dealers and cleaning services can be found in the telephone Yellow Pages under headings like "Sewer Cleaning Equipment and Supplies" and "Sewer Contractors". A list of operators that offer catch basin cleaning services (as well as maintenance for other stormwater BMPs) can be found at http://www.co.thurston.wa.us/stormwater/facilities/facilities-contractors.html

All of the solids and stagnant water collected from catch basin sumps must be disposed of properly. None of the sump contents can be flushed into the catch basin outflow pipe. Depending on the nature of the pollutants in the sump, and the associated types of activities taking place on the site, the sump contents may need to be disposed of as hazardous waste. Contractors who perform catch basin cleanout services will be required to follow specified disposal requirements.

The use of other BMPs, such as frequent sweeping of activity areas, covering activity areas, reducing activity occurrence, and containing runoff from activity areas will help reduce catch basin cleaning frequency, thus saving time and money. All businesses and agencies should set up maintenance schedules for all of their BMPs so that coordinated BMP maintenance efforts result in reduced catch basin cleaning frequencies.

S.10 Labeling Storm Drain Inlets On Your Property

Description of Pollutant Sources: Waste materials dumped into storm drain inlets can have severe impacts on receiving waters. Posting notices regarding discharge prohibitions at storm drain inlets can prevent waste dumping. Storm drain signs and stencils are highly visible source controls that are typically placed directly adjacent to storm drain inlets.

Pollutant Control Approach: The stencil, affixed sign, or metal grate contains a brief statement that prohibits dumping of improper materials into the urban runoff conveyance system. Storm drain messages have become a popular method of alerting the public about the effects of and the prohibitions against waste disposal.

Required BMPs

- Label storm drain inlets in residential, commercial, industrial areas, and any other areas where contributions or dumping to storm drains is likely.
- Stencil or apply storm drain markers adjacent to storm drain inlets to help prevent the improper disposal of pollutants. Or, use a storm drain grate stamped with warnings against pollution.
- Place the marker in clear site facing toward anyone approaching the inlet from either side.
- Use a brief statement and/or graphical icons to discourage illegal dumping. Examples include:
 - "No Dumping Drains to Stream"

- "No Pollutants Drains to Puget Sound"
- "Dump No Waste Drains to Lake"
- "No Dumping Puget Sound Starts Here"
- Thurston County requires the installation of storm drain markers at all storm drain inlets. Contact the Thurston County Water Resources Division at 360-754-4681 for information on how to obtain approved markers.
- Maintain the legibility of markers and signs. Signage on top of curbs tends to weather and fade. Signage on face of curbs tends to be worn by contact with vehicle tires and sweeper brooms.
- When painting stencils or installing markers, temporarily block the storm drain inlet so that no pollutants are discharged from the labeling activities.

S.11 Color Events

Description of Pollutant Source: Color events are charity, religious, or commercial events that involve the use of powdered (typically cornstarch-based) and/or liquid dyes. Because they typically occur outside, there is a high likelihood of the color material entering drainage systems and surface water unless measures are taken to prevent these illicit discharges from occurring.

"Biodegradable" and "non-toxic" do NOT mean a substance can go into storm drains or water bodies. The dye material can harm aquatic organisms by altering water quality and chemistry. State and Federal environmental laws require the county to prohibit nonstormwater discharges to storm drains. Dye material and any wash water are prohibited discharges

Pollutant Control Approach: Plan for the event. Control the application areas for the powder or liquid dyes. Block off storm drain inlets prior to the event. Clean up the areas immediately after the event.

Required BMPs

Pre-Event:

- Create a map of your event that includes the following:
 - Event route.
 - Nearby streams, lakes, and ponds.
 - Start and finish areas.

- Color application stations/areas.
- Storm drain inlets and open stormwater system features (e.g., ditches, swales, bioretention, rain gardens) at the color application, start and finish areas.
- Create a Pollution Plant that details:
 - Measures taken to ensure that NO dye material, either during or after the event, will enter the storm drainage system.
 - How all dye material will be removed and disposed of.
 - What will happen in the event of rain (including addressing localized flooding, runoff, and collection of the stormwater).
 - Emergency numbers for Thurston County in case dye material does enter the storm drain or water body.
- Use handheld brooms to complete the initial cleanup of paved surfaces. Follow with use of a vacuum sweeper truck on roads.
- Contract with a commercial street sweeping firm to clean paved surfaces. Have a storm drain cleaning contractor on–call for discharges to storm drains or emergency cleanup if necessary.
- Ensure the commercial street sweeping firm has a plan in place for the proper disposal of sweepings from the event and associated air filters.
- Ensure all cleanup will be completed prior to the next forecasted rainfall, or no later than 24 hours after the race event, and the contractor will have enough equipment and staff on hand for the cleanup.
- Request a copy of the dye product's SDS (Safety Data Sheet) from the manufacturer or supplier. Review the SDS for potential safety and environmental hazards.
- Comply with Thurston County event permit requirements that contain stormwater pollution prevention BMPs. If no event permit is required, provide the following information to Thurston County's Water Resources Division a minimum of two weeks prior to the scheduled event:
 - Copies of the map
 - Pollution prevention plan

- Commercial cleaning contract
- o Dye SDSs
- Names and contact information of the event official for both during and after the event.

Preventing Runoff from Entering Drainage Systems and Water Bodies:

- Protect storm drains by using berms, covering the drains, and using catch basin covers.
- Use care when removing berms, covers, and tarps to ensure no dye enters the storm drains.
- Prohibit participants from throwing dye within 100 feet of any stream or other surface water body.
- Prohibit participants from throwing dye within 100 feet of any open stormwater feature (e.g., ditch, swale, bioretention, rain garden, detention pond).
- Set up color stations at least 100 feet away from any surface water or open stormwater feature.
- The route, start, finish, and color application stations must be at least 100 feet away from any permeable pavement or the permeable pavement must be completely covered.
- If the event will be held on a small, contained area, cordon off the area and place enough covers on the ground to cover the entire site. If possible, contain the color application to grassy areas where ground covers are unnecessary.

Event Clean up:

- Dry off tarps and stained wet pavement with towels or absorbent pads.
- Use brooms or street sweepers to clean up paved areas. The fineness of the material may require sweepers with dust control systems.
- Do not use blowers to move dye material.
- Do not use hoses or pressure washers to rinse excess dye off of tarps, sidewalks, or paved areas. If it becomes necessary to use water to clean

surfaces, all the water must be collected and disposed of to the sanitary sewer system, with approval from the local sewer agency.

- Call the Thurston County spill response hotline immediately (24/7) at 360-867-2099 if any colored water enters a storm drain or water body.
- Dispose of the collected sweeping materials, cleaning materials, and air filters appropriately.
- All litter and debris must be picked up and properly disposed of.
- All cleanup must be done within 24 hours of the race event.

S.12 Goose Waste

Description of Pollutant Sources: Goose waste deposited near water or in water can contribute nutrients and algae growth. Goose feces may contain pathogens and contribute to the spread of diseases. Swimmers itch (schistosome or cercarial dermatitis) is caused by a parasite that can be spread by goose droppings but does not mature or reproduce in humans.

Pollutant Control Approach: To help decrease geese pollution to water sources, remove waste periodically and use deterrent management practices.

Required BMPs

This BMP is for areas of chronic accumulation of goose waste that impact stormwater systems.

- If possible, pick up goose waste using shovels, brooms, rakes, power sweepers, and trash cans. Properly dispose of goose waste in the garbage.
- Do not blow, sweep, or wash goose waste into waterways or storm sewer systems.
- Regularly clean goose waste from areas of chronic deposition where deterrence measures are impractical.
- Do not feed wild geese or any other wild animals.
- In recreational areas, post signs discouraging the feeding of geese and other wild animals.

Suggested BMPs

- Change the habitat from goose-friendly to goose-resistant. Reduce lawn areas and increase the height of shoreline vegetation (tall grass, shrubs), as geese are reluctant to walk through tall vegetation.
- Create a natural geese barrier. 20 to 100 feet of herbaceous vegetation at least 3 feet in height to discourage geese. A narrow, winding path through the plantings will allow for beach access, while preventing geese from having a direct line of sight through the planted area.
- Make bank slopes steeper than 4:1 to discourage geese by preventing a clear view of the bank top and potential predators. Or, separate the beach from the grass with a few steep steps, which makes the ascent too difficult for most geese.
- Narrow ponds to limit takeoff and landing opportunities.
- Where space is limited, use one or two rows of shrub plantings combined with a fence. Fences can be made from woven wire, poultry netting, plastic netting, plastic snow fencing, monofilament line, or electrified wire. Fences should be at least 24 inches tall (3 feet may be better), firmly constructed, and installed to prevent the geese from walking around the ends. Lower openings should be no larger than 4 inches from the ground to prevent goslings from walking under or through the fence.
- Construct a grid of wire or line above the water's surface to prevent geese from flying into a pond that they have been accustomed to using. The grid should be one to two feet above the water surface but may be taller if humans need access to the area under the grid. There should be no more than five feet of space between gridlines. To prevent geese from walking under the grid, install a perimeter fence. Regularly monitor the grid for holes, trapped wildlife, and sagging.
- Canada geese are protected under federal and state law and a hunting license and open season are required to hunt them. Where lethal control of Canada geese is necessary outside of hunting seasons, it should be carried out only after the above nonlethal control techniques have proven unsuccessful and only under permits issued by the U.S. Fish and Wildlife Service. Currently, the only agency permitted for lethal removal is the U.S. Department of Agriculture's Wildlife Services. Lethal control techniques include legal hunting, shooting out of season by permit, egg destruction by permit, and euthanasia of adults by government officials.
- Scare geese away when they are around. Geese often learn quickly to ignore scare devices that are not a real physical danger. Vary the use, timing, and

location of tactics. Take advantage of geese being fearful of new objects. Examples of harassment and scare tactics:

- Dog patrols: When directed by a handler, dogs are the method of choice for large open areas. Results are often immediate. After an aggressive initial use (several times a day for one or two weeks), geese get tired of being harassed and will use adjacent areas instead. A dog can be tethered to a long lead (which may require relocating the dog and tether frequently to cover more area), be allowed to chase and retrieve a decoy thrown over a large flock of geese or be periodically released to chase the birds (if this is not against leash laws).
- **Eyespot Balloons:** Large, helium-filled balloons with large eye-like images. Tether balloons on a 20- to 40-foot monofilament line attached to a stake or heavy object. Locate balloons where they will not tangle with trees or utility lines.
- Flags and Streamers: Simple flags from plastic mounted on tall poles or mylar tape to make 6-foot streamers attached to the top of 8-foot long poles. Flags and streamers work best in areas where there is steady wind.
- **Scarecrows:** Effective in areas where geese view humans as dangerous predators. For maximum effect, the arms and legs should move in the wind, use bright colors, and large eyes. Large, blowup toy snakes are reported to work as a type of scarecrow.
- Noisemakers: Devices that make a loud bang such as propane cannons, blanks, and whistle bombs can scare geese. Making the noise as soon as geese arrive and persistence are the keys to success when using these devices. Consult noise ordinances and other permitting authorities (such as the local police department) before using.
- Lasers: Relatively low-power, long wavelength lasers provide an effective means of dispersing geese under low light conditions. The birds view the light as a physical object or predator coming toward them and generally fly away to escape. Never aim lasers in the direction of people, roads, or aircrafts.
- Geese's favorite food is new shoots of grass. Low lying grass also allows easy access to the water for protection from predators. Let grass grow to six inches or taller. Stop fertilizing and watering the lawn to reduce the palatability of the lawn.
- Maximize open sight lines for geese to less than 30 feet.

• Plant shrubs or trees along ponds to limit takeoff and landing opportunities.

Refer to: <u>https://wdfw.wa.gov/species-habitats/species/branta-canadensis</u> for additional information.

Chapter 2 - Best Management Practices for Single-Family Residences

The actions we take each day in and around our homes have a profound effect on surface water quality and fish habitat in this region. Stormwater goes directly to our rivers, groundwater, lakes, streams, and to Puget Sound. It does not go to the wastewater treatment plant. Any pollutants that get into the stormwater go directly to surface waters or groundwater. Small amounts of pollution from many different sources can significantly affect our waterways. Yard maintenance, waste storage, car washing and maintenance, and pool cleaning are some of the activities that can adversely impact water quality. Stormwater BMPs discussed in this section are practical ways to keep stormwater from becoming polluted in the first place. It is recommended that all residents in Thurston County use these BMPs. **Please note that some of these procedures are required by various state, or county laws, and are noted as required BMPs.**

Below is a general list of BMPs for Thurston County residents. The list includes brief information on applicability. For more information on the following BMPs, refer to the information in Sections 3.1 through 3.7 of this chapter. Additionally, BMPs addressing maintenance of roof runoff systems and on-site stormwater management features are described in Volumes III and V.

2.1 Automobile Washing

Many residents wash their cars in the driveway or on the street. Washwaters typically flow to a storm drain or ditch, which discharges stormwater directly to the underlying groundwater or to the nearest river, stream, lake, or Puget Sound. Soaps and detergents, even the biodegradable ones, can have immediate and long-term effects on aquatic life in water bodies. The grime washed off the car also contains a variety of pollutants that can harm fish and wildlife.

2.1.1 Suggested BMPs

2.1.1.1 Away from Home (preferred option):

• Consider not washing your car at home. Take it to a commercial car wash that has a recycle system and discharges wastewater to the sanitary sewer for treatment.

2.1.1.2 At Home:

- Wash your car directly over your lawn or make sure the washwater drains to a vegetated area. This allows the water and soap to soak into the ground instead of running off into a local water body.
- Ideally, no soaps or detergents should be used, but if you do use one, select one without phosphates.

- Commercial products are available that allow you to clean a vehicle without water. These were developed for areas where water is scarce, so a water saving benefit is realized, as well as reduced pollution.
- Use a hose nozzle with a shut-off valve to save water.
- Do not wash your car if rain is expected. Rain events will rapidly wash any chemicals and cleaning products from your property into the stormwater system (and to downstream waters).
- Pour the bucket of soapy, dirty washwater down your sink. This way the water doesn't pollute surface water. Instead, it's treated at the wastewater treatment plant or by your septic system.

2.2 Automobile Maintenance

Many of us are "weekend mechanics". We enjoy the cost savings of changing our own oil and antifreeze, topping off the battery with water, and generally making our car perform its best. There is a lot of potential for stormwater pollution associated with these activities; however, the following BMPs will help you minimize pollution while servicing your car, truck, van, or RV.

2.2.1 Required BMPs

- Recycle all oils, antifreeze, solvents, and batteries. Many local car parts dealers and gas stations accept used oil and oil filters. The Household Hazardous Waste facilities at the Thurston County Waste and Recovery Center accept oil, oil filters, antifreeze, and solvents. Some businesses will buy automotive batteries. Check the Yellow Pages or the internet to find such businesses.
- Never dump new or used automotive fluids or solvents on the ground, in a storm drain or street gutter, or in a water body. Eventually, it will make its way to local surface waters or groundwater, including the water we drink.
- Do not mix wastes. The chlorinated solvents in some carburetor cleaners can contaminate a huge tank of used oil, rendering it unsuitable for recycling. Always keep your wastes in separate containers which are properly labeled and store them out of the weather.

2.2.2 Suggested BMPs

- Fix all leaks, to keep the leaky material off streets and out of surface water.
- To dispose of oil filters, punch a hole in the top and let drain for 24 hours. This is where a large funnel in the top of your oil storage container will come in handy. After draining, wrap in 2 layers of plastic and dispose of in your regular garbage or recycle by taking it to the Thurston County Waste and Waste and Recovery Center. Call the Thurston County Department

of Public Works at (360) 867-2300 for up-to-date information on the appropriate disposal of consumer products.

- Use care in draining and collecting antifreeze to prevent accidental spills. Spilled antifreeze tastes sweet and can be deadly to animals that ingest it.
- Perform your service activities on concrete or asphalt or over a plastic tarpaulin to make spill cleanup easier. Keep a bag of kitty litter on hand to absorb spills. If there is a spill, sprinkle a good layer on the spill, let it absorb for a little while and then sweep it up. Place the contaminated litter in a plastic bag, tie it up, and dispose of it in your regular garbage. Take care not to leave kitty litter out in the rain; it will form a sticky goop that is hard to clean up.
- If you are doing body work outside, be sure to use a tarpaulin to catch material resulting from grinding, sanding, and painting. Dispose of this waste by double bagging in plastic and placing in your garbage.

2.3 Storage of Solid Wastes and Yard Wastes

Improper storage of recycling, yard waste, and trash at residences can lead not only to water pollution problems, but problems with neighborhood pets and vermin as well. Following the BMPs listed below can help keep your property a clean and healthy place to live.

2.3.1 Suggested BMPs

- Recycle as much as you can. Most Thurston County residents have access to curbside pickup for yard waste and recyclable materials. Also, look under "recycling" in the phone book for firms which take other recyclables.
- All waste containers kept outside should have lids (Figure IV 6.1). If your lid is damaged, please call your local solid waste hauler to get the lid repaired or replaced. The Thurston County web site lists haulers for your neighborhood: <www.co.thurston.wa.us/wwm/>

Figure IV - 6.1 Waste Dumpster with Properly Sealed Lid.

- Leaking waste containers should be replaced. If your container is damaged, please call your local solid waste hauler.
- Store waste containers under cover if possible, or on grassy areas.
- Inspect the storage area regularly to pick up loose scraps of material and dispose of them properly.
- Purchase products which have the least amount of packaging materials.
- Compost biodegradable materials such as grass clippings and vegetable scraps instead of throwing them away. Your flowerbeds will love the finished compost, and you'll be helping to conserve limited landfill space. Call Thurston County Department of Public Works at (360) 867-2300 for more information on composting or information on yard waste collections. See the section on composting for BMPs relating to that activity.
- A fun alternative to traditional composting is worm composting. You can let worms do all the work for you by keeping a small vermiculture box just outside your kitchen. For more information on getting started with worms, call the number listed above.

2.4 Composting

Composting is an earth-friendly activity as long as some common sense rules outlined below are followed. If you choose to compost, the following BMPs should be utilized.

More information can be found on-line at: <u>http://www.mgftc.org/resources/composting-information/</u>

2.4.1 Suggested BMPs

- Compost piles must be located on an unpaved area where runoff can soak into the ground or be filtered by grass and other vegetation. Compost piles should be located in an area of your yard not prone to water ponding during storms, and should be kept well away from wetlands, streams, lakes, and other drainage paths.
- Compost piles must be maintained and turned over regularly to work properly. Large piles of unattended compost may create odor and vermin problems.
- Avoid putting hazardous, inorganic, plastics or metal waste in the pile.
- Cover the compost pile (Figure IV 6.2) for two reasons:
 - 1. To keep stormwater from washing nutrients into waterways.
 - 2. To keep excess water from cooling down the pile, which will slow down the rate of decomposition.

11K				1 (I	A H		
					•		
		•			•		
			•	•			
(.)	
	-				-		

(photo courtesy of Green Culture)

Figure IV - 6.2 Covered Compost Bin.

Build bins of wood, chicken wire, or fencing material to contain compost so it can't be washed away. Contact the Thurston County WSU Extension Master Recycler Composter Program for more information and to get free composter designs and materials lists at: <u>https://extension.wsu.edu/thurston/gardening/mc/</u>.

• Building a small earthen dike around your compost pile is an effective means of preventing nutrient-rich compost drainage from reaching stormwater paths.

2.5 Yard Maintenance and Gardening

This section deals with the normal yard maintenance activities we all perform at our homes. Over watering, over fertilizing, improper herbicide application, and improper disposal of trimmings and clippings can all contribute to serious water pollution problems. Following the BMPs listed below will help alleviate pollutant runoff.

2.5.1 Required BMPs

• Follow the manufacturer's directions exactly for mixing and applying herbicides, fungicides, and pesticides, and use them sparingly. Never apply when it is windy or when rain is expected. Never apply over water, within 100 feet of a well-head, or adjacent to streams, wetlands, or other water bodies. Triple-rinse empty containers, using the rinsate for mixing your next batch of spray, and then double-bag and dispose of the empty container in your regular garbage. Never dispose of grass clippings or other vegetation in or near storm drains, streams, lakes, or Puget Sound.

2.5.2 Suggested BMPs

- Use natural, organic soil amendments when possible. The excellent soil conditioning properties of the organic matter aid water retention in lighter soils and help to break up and aerate heavier soils, so roots can grow better and less watering is needed. It contains both readily available and long term nitrogen and other nutrients commonly lacking in Northwest soils. The slow release of nitrogen better matches the needs of plants. Thus, there is much less potential for nitrates to leach into surface or groundwater due both to less "excess nitrogen" and less water use. Better vegetative growth can also reduce erosion and runoff.
- Follow manufacturer's directions when applying fertilizers. More is not better, either for your lawn or for local water bodies. Never apply fertilizers over water or adjacent to ditches, streams, or other water bodies. Remember that organic fertilizers have a slow release of nitrogen, and less potential to pollute then synthetic fertilizers.
- Let your yard go dormant during the summer. Watering deeply but slowly once each rainless month will help support a dormant lawn. Avoid heavy traffic on a dormant lawn, or regularly water high-use areas to prevent damage. When the rains return in the fall overseed any thin areas to thicken the lawn and help crowd out weeds.
- Save water and prevent pollution problems by watering your lawn sensibly. Lawns and gardens typically need the equivalent of 1 inch of rainfall per week. Water deeply, but slowly once a week for a healthier lawn. You can check on how you're doing by putting a wide mouth jar out where you're sprinkling, and measure the water with a small plastic ruler.

Overwatering to the point of runoff can carry polluting nutrients to the nearest water body.

- Consider planting a vegetated buffer zone adjacent to streams or other water bodies on your property. Call the Thurston County Conservation District at (360) 754-3588 for advice and assistance in developing a planting plan. The Stream Team program (360) 754-4681 at the County may even be able to help you plant it!
- Reduce the need for pesticides and fertilizers on lawns by improving the health of the soil. Aerating, thatching, and topdressing with compost will improve soil health and help desired grasses compete with weeds and moss.
- Make sure all fertilizers and pesticides are stored in a covered location. Rain can wash the labels off of bottles and convert 50 pounds of boxed fertilizer into either a solid lump or a river of nutrients.
- Use a mulching mower and mow higher to improve soil/grass health and reduce or eliminate pesticide use.
- Compost all yard clippings, or use them as mulch to save water and keep down weeds in your garden. See Composting section for more information.
- Practice organic gardening and virtually eliminate the need to use pesticides and fertilizers. Contact Thurston County Cooperative Extension at (360) 867-2163 for information and classes on earth-friendly gardening.
- Pull weeds instead of spraying and get some healthy exercise, too. If you must spray, use the least toxic formulations that will get the job done. The Master Gardener program listed above can help advise you on which spray to use.
- Work fertilizers into the soil instead of letting them lie on the ground surface exposed to the next rain storm.
- Plant native vegetation which is suited to Northwest conditions, they require less water and little to no fertilizers and pesticides.
- Contact your local waste disposal company for curbside pickup and recycling of yard waste.
- For more information on lawn care, see http://www.co.thurston.wa.us/health/ehcsg/pdf/lawn_care.pdf

2.6 Swimming Pool and Spa Cleaning and Maintenance

Despite the fact that we immerse ourselves in it, the water from pools and spas is far from chemically clean. Nutrients, pH, and chlorine can adversely affect fish and wildlife

in water bodies. Following these BMPs will ensure the cleanliness of your pool and the environment.

2.6.1 Required BMPs

- Pool and spa water must be dechlorinated to 0.1 mg/L if it is to be emptied into a ditch or to the stormwater drainage system. Contact your pool chemical supplier to obtain the neutralizing chemicals you will need. The rate of flow into the ditch or drainage system must be regulated so that it does not cause problems such as erosion, surcharging, or flooding. Water discharged to the ground or a lawn must not cross property lines and must not produce runoff.
- If pool and spa water cannot be dechlorinated, it must be discharged to the sanitary sewer. Prior to draining, your local sewer provider must be notified to ensure they are aware of the volume of discharge and the potential effects of chlorine levels. A pool service company can help you determine the frequency of cleaning and backwash of filters.
- Diatomaceous earth used in pool filters cannot be disposed of in surface waters, on the ground, or into stormwater drainage systems or septic systems. Dry it out as much as possible, bag it in plastic, and dispose of at the landfill.

2.6.2 Suggested BMPs

• Hire a professional pool service company to collect all pool water for proper disposal. Make sure to ask them where they will dispose of it and the kind of permits they hold to do so.

2.7 Household Hazardous Material Use, Storage, and Disposal

Once we really start looking around our houses, the amount of hazardous materials we have on site is a real eye-opener. Oil-based paints and stains, paint thinner, gasoline, charcoal starter fluid, cleaners, waxes, pesticides, fingernail polish remover, and wood preservatives are just a few hazardous materials that most of us have around the house.

When products such as these are dumped on the ground or in a storm drain, they can be washed directly to receiving waters where they can harm fish and wildlife. They can also infiltrate into the ground and contaminate drinking water supplies. The same problem can occur if they are disposed of with your regular garbage; the containers can leak at the landfill and contaminate groundwater. The same type of contamination can also occur if hazardous products are poured down a sink or toilet into a septic system. Don't pour them down the drain if you're on municipal sewers, either. Many compounds can "pass through" the wastewater treatment plant without treatment and contaminate receiving waters, or they can harm the biological process used at the treatment plant, reducing overall treatment efficiency. With such a diversity of hazardous products present in all homes in Thurston County, a large potential for serious environmental harm exists if improper methods of storage, usage, and disposal are employed. Using the following BMPs will help keep these materials out of our soils, sediments, and waters.

2.7.1 Required BMPs

- Hazardous Materials must be used in accordance with the manufacturer recommendation or guidelines as shown on the label.
- Always store hazardous materials in properly labeled containers, never in food or beverage containers which could be misinterpreted by a child as something to eat or drink.
- Dispose of hazardous materials and their containers properly. Never dump products labeled as poisonous, corrosive, caustic, flammable, inflammable, volatile, explosive danger, warning, caution, or dangerous outdoors, in a storm drain, or into sinks, toilets or drains. Call the Thurston County Department of Public Works at (360) 867-2300 for information on disposal methods, collection events, and alternative products. Household hazardous wastes from Thurston County residents and non-residents are accepted at the HazoHouse, at the Thurston County Waste and Recovery Center in Hawks Prairie at 2418 Hogum Bay Road NE.

2.7.2 Suggested BMPs

- Check hazardous material containers frequently for signs of leakage. If a container is rusty and has the potential of leaking soon, place it in a secondary container before the leak occurs and prevent a cleanup problem.
- Hazardous materials should be stored out of the reach of children.
- Store hazardous materials containers under cover and off the ground. Keep them out of the weather to avoid rusting, freezing, cracking, labels being washed off, etc.
- Keep appropriate spill cleanup materials on hand. Kitty litter is good for many oil-based spills.
- Ground cloths and drip pans must be used under any work outdoors which involves hazardous materials such as oil-based paints, stains, rust removers, masonry cleaners, and others bearing label warnings as outlined above (Figure IV 6.3).

Figure IV - 6.3 Drip Pan for Capturing Spills and Drips During Engine Repair and Maintenance.

- Latex paints are not a hazardous waste, but are not accepted in liquid form at the landfill. To dispose of, leave uncovered in a protected place until dry, then place in the garbage. If your can is at least half full, you can take it to the HazoHouse to be placed in Swap Shop area. If you wish to dry waste paint quickly, mix kitty litter or sawdust in the can to absorb the paint. Once paint is dry, leave the lid off when you place it in the garbage so your garbage collector can see that it is no longer liquid.
- Use less toxic products whenever possible. Ecology maintains a hotline at 1-800-RECYCLE, or see information online at <u>http://1800recycle.wa.gov/</u>.
- If an activity involving the use of a hazardous material can be moved indoors out of the weather, then do so. Make sure you can provide proper ventilation, however.
- Follow manufacturers' directions in the use of all materials. Overapplication of yard chemicals, for instance, can result in the washing of these compounds into receiving water bodies. Never apply pesticides when rain is expected.
- When hazardous materials are in use, place the container inside a tub or bucket to minimize spills and store materials above the local Base Flood Elevation (BFE).

2.8 Pet Waste Management

Pets and pet-care can generate pollutants from waste, animal washing, and cage or kennel cleaning. Pet waste that washes into lakes, rivers, streams or Puget Sound

begins to decay, using up oxygen and releasing ammonia. Low oxygen levels and ammonia combined with warm water can kill fish. Pet waste also contains nutrients that encourage weed and algae growth in waters we use for swimming, boating and fishing. Most importantly, in many urban areas, pet waste is the largest source of bacterial loading to streams. It can carry diseases that could make water unsafe for contact and lead to beach closures or affect shellfish harvest. These include:

- Campylobacteriosis—bacterial infection
- Salmonellosis—bacterial infection
- Toxocariasis—roundworm infection
- Toxoplasmosis—protozoan parasite infection
- Giardiasis—protozoan parasite infection
- Fecal Coliform—bacteria in feces, indicates contamination
- E. coli—bacteria in feces, may cause disease.

Cleaning up after your pet can be as simple as taking a plastic bag or pooper scooper along on your next walk. Then choose one of the following:

2.8.1 Suggested BMPs for Pet Owners

- Regularly pick up and dispose of pet waste deposited on walks and at home.
- Bag it Put waste in a securely closed bag and deposit it in the trash. Do not put it in your yard waste container because pet waste may carry diseases, and yard waste treatment may not kill disease organisms.
- Do not compost or use pet waste as fertilizer. Harmful bacteria, worms, and parasites that can transmit disease can live in the soil for years even after the solid portion of the pet waste has dissolved.
- Do not dispose of unused pet pharmaceuticals in a storm drain, in a toilet, or down a sink. Check with your local refuse collector for proper disposal locations of pet medications.
- When cleaning out cages and kennels, dispose of wash water down the toilet or a mop sink. Otherwise, wash directly over lawn areas or make sure the wash water drains to a vegetated area.
- Bathe pets indoors or in a manner that wash water won't be discharged to storm drains, ditches, or surface waters of the state.

2.8.2 Suggested BMPs for Recreation Areas and Multi-Family Properties

- Post signs at recreation areas and multi-family properties (that allow pets) reminding residents and visitors to pick up after their pets.
- Carefully consider the placement of pet waste stations at recreation sites and near multi-family properties that allow pets. Choose locations convenient for dog walkers to pick up a bag at the start of their walk and locations for them to dispose of it at mid-walk or at the end of their walk.
- Check pet waste stations on a regular basis to keep pet waste bags stocked and disposal stations empty. Consider signage to keep regular trash out of pet waste disposal stations to avoid filling them too quickly. Make sure pet waste disposal stations have a cover to keep out water.
- At multi-family properties with roof-top dog runs, ensure that stormwater from the dog run is not discharged to the stormwater system. Check with the local jurisdiction regarding roof-top dog run connections to sanitary sewer.

2.9 On-Site Sewage Maintenance and Operation

Thurston County is responsible for ensuring that stormwater discharged from stormwater management systems we operate does not harm or impair the use of the receiving waters (streams, rivers, lakes, groundwater or Puget Sound). Sample tests of stormwater discharges and receiving water occasionally indicate high levels of fecal coliform bacteria.

One potential source of bacteria is malfunctioning on-site sewage systems (septic systems). Septic system failures have been documented on private property in Thurston County.

Septic systems vary widely in their design and complexity. Owners of septic systems should contact the Thurston County Department of Public Health and Social Services (Environmental Health Division) at (360) 867-2673 to request an as-built of their system. As-built requests are also available at the Development Review counter at 2000 Lakeridge Drive SW, Olympia. More information is available at: www.co.thurston.wa.us/permitting.

In its simplest design the septic tank is the first stage of a private sewage disposal system. The septic tank is a water-tight tank below ground that is usually made of concrete but may be fiberglass, plastic or steel. Septic tanks have one or two access ports for inspection and maintenance which are usually buried a few inches below the ground.

The tank receives household wastewater through an inlet pipe at one end, settles out larger material to the bottom, breaks down waste material with bacteria present in the tank and delivers the partially treated wastewater out another pipe on the opposite end of the tank to the disposal field.

The disposal field is the second stage of the private sewage disposal system and completes the final breakdown of wastewater with organisms in the soil.

The disposal field consists of narrow trenches filled with gravel and perforated pipes that distribute the wastewater to the field. With proper maintenance, a well-designed system can last a long time; however, disposal fields will clog if forced to handle large particles that should settle out in the bottom of the septic tank.

2.9.1 Required BMPs

Owners of septic systems must follow all of the requirements of the Thurston County Department of Public Health and Social Services, Environmental Health Division. They can be contacted at Thurston County Health Department at (360) 867-2673, or on the web at http://www.co.thurston.wa.us/health/ehoss/index.html, for further information and specific requirements applicable to your system.

2.9.2 Suggested BMPs

2.9.2.1 Regular Inspection and Maintenance

Septic tanks require regular inspection and maintenance. Inspections should be done to measure accumulated sludge every 3 to 5 years. Pumping frequency can vary depending on tank size, family size and garbage disposal use. Failure to remove sludge periodically will result in reduced settling capacity and eventual overloading of the disposal field, which can be difficult and expensive to remedy. Maintenance is

required on complex systems, those serving more than one single family residence, and commercial establishments.

2.9.2.2 Eliminate or Restrict Garbage Disposal Use

Eliminating or restricting garbage disposals can significantly reduce the loading of solids to the septic tank thus reducing the pumping frequency.

2.9.2.3 Reduce and Spread Water Use Out Over the Day

Septic tanks are limited in their ability to handle rapid large increases in the amount of water discharged into them. Excess wastewater flow can cause turbulence in the tank flushing accumulated solids into the disposal field. Over time this will impair the ability of the disposal field to function. Limit water using appliances to one at a time. Do one load of clothes a day rather than several in one day. Practice water conservation at home.

2.9.2.4 Chemical Use

Septic systems are to be used for the disposal of household wastewater only. Never dispose of excess or unwanted chemicals into the septic system. Occasional use of household cleaners in accordance with the manufacturers' recommendations should not harm your septic system. There is little evidence that products advertised for use as septic system cleaners and substitutes for pumping actually work as advertised.

For additional information on proper operation of your septic system or to report a failing septic system in your neighborhood, contact Thurston County Environmental Health at (360) 867-2673 or at: www.co.thurston.wa.us/health/ehoss/index.html>.

2.10 Activities in Wetlands and Wetland Buffers

Wetlands and associated buffers are vegetated ecosystems through which water passes. These areas characteristically have a high water table and are often subject to periodic flooding. Wetlands can be very effective in removing sediments, nutrients and other pollutants from stormwater.

Maintaining wetlands and associated buffers helps to slow stormwater runoff, trap sediments and other pollutants and reduce the volume of runoff by allowing infiltration to occur. Reducing the velocity of runoff reduces soil erosion and increases contact time with soil and vegetation. Increasing contact of stormwater with soils and vegetation in a wetland or riparian area can be effective in removing sediments, nutrients and other pollutants from stormwater runoff.

Buffer areas are important to both the wetland and the upland areas as habitat for aquatic wetland-dependent wildlife and as buffers during extreme weather events. Other functions of buffer areas that contribute to water quality include shading, flood attenuation and shoreline stabilization.

Persons responsible for maintenance of wetland areas are encouraged to call Thurston County Development Services at (360)786-5490 prior to performing work in wetlands or their buffers.

2.10.1 Required BMPs

- Removal by hand of manmade litter and control of noxious weeds that are included on the state noxious weed list (Washington Administrative Code [WAC] 16-750) or invasive plant species as identified by Thurston County. Control may be conducted by clipping, pulling, over-shading with native tree and shrub species, or non-mechanized digging. Alternative methods such as mechanical excavation, barrier installation, or herbicide use may be allowed if acceptable to the Department of Resource Stewardship and acquisition of any necessary permits, per Thurston County Code Title 17 Environment, 17.15 Critical Areas.
- Check with Thurston County Development Services and Planning on guidelines for vegetation and hazardous tree removal in critical areas.

2.10.2 Suggested BMPs

- To prevent possible contamination limit fertilizer and herbicide use around wetlands and their buffers.
- Limit access to wetlands and their buffers. To avoid compaction do not establish trails within the wetland areas.