Oak Springs project \# 2013104463 Development

Supplemental Report for
November 2013 Transportation Impact Analysis

Thurston County, WA

THURSTON COUNTY
RECEIVED
OCT 182016
RESOURCE STEWARDSHIP

September 2016

TABLE OF CONTENTS
LIST OF FIGURES ii
LIST OF TABLES ii
CHAPTER 1: INTRODUCTION AND SUMMARY 1
Existing Intersection Operations 3
Project Traffic Impact 3
Site Plan 4
Project Mitigation Summary 4
CHAPTER 2: EXISTING CONDITIONS 6
Study Area Roadway Network 6
Existing Traffic Volumes and Operations 6
CHAPTER 3: IMPACTS 10
Trip Distribution 10
Future Traffic Volumes 10
Intersection Operations 16
CHAPTER 4: PROJECT MITIGATION 17
Mitigation Recommendations for Oak Springs TIA 17
Appendix 19
APPENDIX

LIST OF FIGURES

Figure 1: Study Area 2
Figure 2: Existing Traffic Volumes 8
Figure 3:Trip Distribution and Additional Volumes 11
Figure 4: Pipeline Volumes 12
Figure 5: 2020 Baseline 13
Figure 6: 2020 Baseline Volumes With Oak Springs 14
Figure 7: 2022 With Full Development 15
LIST OF TABLES
Table 1: Key Study Area and Proposed Project Characteristics 1
Table 2: Existing 2016 Study Intersection Operations (PM Peak Hour) 3
Table 3: Future Intersection Operations (PM Peak Hour) 4
Table 4: Future Mitigated Intersection Operations 5
Table 5: Study Area Roadway Characteristics 6
Table 6: Existing Study Intersection Operations (PM Peak Hour) 9
Table 7: Future Intersection Operations 16
Table 8: Future Mitigated Intersection Operations 18

CHAPTER 1: INTRODUCTION AND SUMMARY

This supplemental report is an update to a 2013 transportation impact analysis that was submitted for the Oak Springs development site in unincorporated Thurston County, Washington. The prior traffic impact study, prepared by Heath \& Associates Inc. presented an assessment of the existing roadway conditions and future forecasts of newly generated project traffic. Since that study was submitted to Thurston County, another major development, Oak Tree Preserve, was reviewed and approved by the County.

The purpose of this study is to update the 2013 traffic analysis to include all phases of the approved Oak Tree Preserve and other subsequent approvals made by either the County or the City of Lacey. The Oak Springs project site proposal is unchanged from the 2013 submittal. As appropriate, new transportation mitigation measures are recommended to address the higher level of future background growth addressed in this update. Information regarding the general roadway information, road improvement information, sight distance data is referenced herein, based on the previous Heath \& Associates Oaks Springs study.

The study area is shown in Figure 1, including the five study intersections, where traffic operations are analyzed:

- Pacific Avenue SE / Marvin Road SE
- Pacific Avenue SE / Union Mills Road SE
- Union Mills Road SE / Marvin Road SE
- $19^{\text {th }}$ Avenue SE / Marvin Road SE
- Woodgrove Street SE / Marvin Road SE

This chapter provides an introduction to the project and the steps taken to analyze the associated impacts on the transportation network. It highlights important elements of the remaining chapters, including a description of the project site and a summary of the project site evaluation. Table 1 lists important characteristics of the study area and the proposed project.

Table 1: Key Study Area and Proposed Project Characteristics

Characteristics	Information
Study Area Number of Study Intersections Analysis Period	Five Weekday PM peak hour (one hour between 4pm and 6pm)
Project Development	
Size and Land Use	Single family housing (89 new units)
Proposed Vehicle Trips (In Addition to Existing Traffic) Vehicle Access Points	98 vehicles (PM peak hour)

Tightre
Study Area

Existing Intersection Operations

Existing traffic operations at the study intersections were analyzed for the PM peak hour based on 2010 Highway Capacity Manual methodology'. The estimated level-of-service (LOS) and delay for each study intersection is shown in Table 2. As shown, all study intersections currently meet Thurston County operating standards during the peak hours analyzed.

Table 2: Existing 2016 Study Intersection Operations (PM Peak Hour)

Intersection	Intersection Control	Operating Standard	Existing PM Peak	
			LOS	Delay
Pacific Avenue SE/Union Mills SE	Signalized	D	B	10.1
Marvin Road SE/Pacific Avenue SE	Roundabout	D	C	16.2
Marvin Road SE/Union Mills Road SE	Side-street Stop	D	C	20.8
Marvin Road SE/19 ${ }^{\text {th }}$ Avenue SE	Side-street Stop	D	B	14.7
Marvin Road SEMWoodgrove Street SE	Side-street Stop	D	B	13.5
Signalized/Roundabout: LOS = Level of Service of Intersection Delay = Average delay for all Vehicles	Two-Way or All-Way Stop Controlled: LOS = Level of Service of movement with greatest delay			

Source: DKS Associates

Project Traffic Impact

Consistent with Thurston County Code section 17.10^{2}, a transportation concurrency evaluation is required for a development that generates 25 or more vehicle trips in the PM peak hour. If LOS at transportation facilities falls below adopted standards, mitigation is necessary for a development to meet concurrency. Thurston County adopted LOS standards are LOS E along high density corridors, and LOS D along other urban roads. For those County intersections evaluated in this traffic study that fall below adopted LOS standards, improvements have been identified to mitigate transportation impacts.

Project traffic impacts were evaluated at the study intersections for the weekday PM peak hour during the 2016 project build year. Additional traffic was added to the existing roadway network based on trip generation estimates, trip distribution assumptions associated with the additional 89 housing units and pipeline trips (assumptions are documented in Chapter 3). As shown in Table 3, most of the study intersections did not meet the operation standards for the P peak hours in the future with additional traffic loadings associated with background growth and the proposed project.

[^0]Table 3: Future Intersection Operations (PM Peak Hour)

Intersection	Intersection Control	Operating Standard	2020 PM Peak (Baseline)		2020 PM Peak (with Oak Springs)		2022 PM Peak (Full Development)	
			LOS	Delay	LOS	Delay	LOS	Delay
Pacific Avenue SE/ Union Mills SE	Signalized	D	B	12.0	B	18.2	C	20.1
Marvin Road SE/ Pacific Avenue SE	Roundabout	D	F	65.1	F	67.6	F	78.8
Marvin Road SE/ Union Mills Road SE	Two-Way Stop	D	F	>120	F	>120	F	>120
Marvin Road SE/ $19^{\text {th }}$ Avenue SE	Two-Way Stop	D	F	>120	F	>120	F	>120
Marvin Road SE/ Woodgrove Street SE	Two-Way Stop	D	C	18.4	C	21.1	C	22.7
Signalized/Roundabout: LOS = Level of Service of Intersection Delay=Average delay for all Vehicles			LOS = Level of Service of movement with greatest delay					

Source: DKS Associates

Site Plan

The site plan provided by the project sponsor was reviewed to evaluate site access, intersection sight distance, pedestrian and bicycle access. The evaluation of these issues includes the identification of associated on-site project modifications or improvements, which are explained in detail in Chapter 3 of this report and summarized in the "Project Mitigation Summary" section below.

Project Mitigation Summary

Three intersections fail to meet mobility standards under 2020 baseline PM peak conditions, and perform slightly worse with the Oak Springs development and two additional years of background growth. The three intersections and recommended mitigations strategies are as follows:

- Marvin Road SE/Pacific Avenue SE. The eastbound and southbound approaches at this roundabout fail under 2020 Baseline PM conditions, which include background traffic growth and trips from nearby development projects such as Oak Tree Preserve. WSDOT currently has no plans for adding capacity to this two-lane roundabout. Should WSDOT identify a need for additional capacity, mitigation could include a proportionate share contribution based on Oak Springs development trips.
- Marvin Road SE/Union Mills Road SE. High delay for the stop-controlled eastbound approach is due to infrequent gaps in the heavy southbound traffic as well as conflicting northbound left turns. This deficiency occurs under 2020 Baseline PM Conditions, prior to addition of Oak

Springs trips. This intersection is identified for mitigation in the Oak Tree Preserve TIA, with access control that will prohibit eastbound left turns, which have the highest delays. To accommodate vehicles needing to make this movement, improvements at the Marvin Road SE/19th Avenue SE intersection are needed in order to enable u-turns.

- Marvin Road SE/19 ${ }^{\text {th }}$ Avenue SE. High delay for the stop-controlled eastbound and westbound approaches is due to infrequent gaps in the heavy southbound traffic on Marvin Road SE. This deficiency occurs under 2020 Baseline PM conditions, prior to addition of Oak Springs trips. New intersection control (signal or roundabout) is a required mitigation for the Oak Tree Preserve development. The Oak Springs development may be conditioned to contribute to this mitigation in proportion to the relative number of trips it is adding to the intersection. Under 2020 PM conditions, this proportion is 52 new trips out of a total of 1,003 new trips, or about 5% of the traffic volume growth at the intersection. The Marvin Road SE/19th Avenue SE intersection was analyzed as a signalized intersection in order to test the identified mitigation under 2020 and 2022 PM peak hour conditions. Results are shown in Table 4.

Table 4: Future Mitigated Intersection Operations

Intersection	Intersection Control	Operating Standard	2020 PM Peak (with Oak Springs)		2022 PM Peak (Full Development)	
			LOS	Delay	LOS	Delay
Marvin Road SE/ $19^{\text {th }}$ Avenue SE	Signalized	D	C	31.8	D	35.0
Signalized: LOS = Level of Service of Intersection Delay=Average delay for all Vehicles			Two-Way or All-Way Stop Controlled: LOS = Level of Service of movement with greatest delay			

Source: DKS Associates
With a new signal, the intersection operated acceptably under both 2020 and 2022 PM peak conditions with the Oak Springs development traffic.

CHAPTER 2: EXISTING CONDITIONS

This chapter provides documentation of existing study area conditions, including study area roadway network, and existing traffic volumes and intersection operations. Supporting details are provided in the Appendix.

Study Area Roadway Network

Roadway serving the proposed site consists of multi-lane arterials and two-lane collector roads which vary in width, terrain, and posted speeds. As indicated by their specific arterial designations, these roadways also vary in their overall function as part of the general network. Key roadways in the study area are summarized in Table 5 along with their existing characteristics.

Table 5: Study Area Roadway Characteristics

Roadway	Functional Classification	Number of Lanes	Posted Speed
Woodgrove Street	Local Road	2	25 mph
$19^{\text {th }}$ Avenue SE	Collector	2	25 mph
Marvin Road SE	Major Arterial	4	35 mph
Union Mills Road SE	Minor Arterial	2	35 mph
Pacific Avenue SE	Urban Collector	2	45 mph

Source: DKS Associates

Existing Traffic Volumes and Operations

Existing PM peak hour traffic operations were analyzed at the following study intersections:

- Pacific Avenue SE / Marvin Road SE
- $19^{\text {th }}$ Avenue SE / Marvin Road SE
- Woodgrove Street SE / Marvin Road SE
- Union Mills Road SE / Marvin Road SE
- Pacific Avenue SE / Union Mills Road SE

To perform the intersection analysis, traffic counts were collected during the PM (4:00 to 6:00) peak periods on Thursday March 3, 2016. The peak hour traffic volumes analyzed under existing conditions are shown in Figure 2, with the detailed traffic counts included in the Appendix.

The purpose of intersection analysis is to ensure that the transportation network remains within desired performance levels as required by County mobility targets. Intersections are the focus of the analysis because they are the controlling bottlenecks of traffic flow and the ability of a roadway system to carry traffic efficiently is nearly always diminished in their vicinity.

Before the analysis results of the study intersections are presented, discussion is provided for two important analysis topics: intersection performance measures (definitions of typical measures) and required operating standards (as specified by the agency with roadway jurisdiction).

Intersection Performance Measures

Level of service (LOS) ratings and volume-to-capacity (V/C) ratios are two commonly used performance measures that provide a good indication of intersection performance. In addition, they are often incorporated into agency mobility standards.

- Level of service (LOS): A "report card" rating (A through F) based on the average delay experienced by vehicles at the intersection ${ }^{3}$. LOS A, B, and C indicate conditions where traffic moves without significant delays over periods of peak hour travel demand. LOS D and E are progressively worse operating conditions. LOS F represents conditions where average vehicle delay has become excessive and demand has exceeded capacity.
- Volume-to-capacity (V/C) ratio: A decimal representation (typically between 0.00 and 1.00) of the proportion of capacity that is being used at a turn movement, approach leg, or intersection. It is determined by dividing the peak hour traffic volume by the hourly capacity of a given intersection, approach, or movement. A lower ratio indicates smooth operations and minimal delays. As the ratio approaches 1.00 , congestion increases and performance is reduced. If the ratio is greater than 1.00 , the turn movement, approach leg, or intersection is oversaturated and usually results in excessive queues and long delays.

[^1]

Required Operating Standards

Thurston County has a mobility target of LOS D for urban roads and LOS E for high density corridor ${ }^{4}$.

Existing Operating Conditions

Existing traffic operations at the study intersections were analyzed for the PM peak hour based on the 2010 Highway Capacity Manual methodology for signalized and unsignalized intersections ${ }^{5}$. Results were compared with the County's minimum acceptable LOS mobility target as shown in Table 6. All existing study intersections currently meet operating standards during the PM peak period analyzed.

Table 6: Existing Study Intersection Operations (PM Peak Hour)

Intersection	Intersection Control	Operating Standard	Existing PM Peak	
		LOS		
	Signalized	D	B	10.1
Marvin Road/Pacific Avenue	Roundabout	D	C	16.2
Marvin Road/Union Mills	Side-street Stop	D	C	20.8
Marvin Road/19 ${ }^{\text {th }}$ Avenue	Stop	D	B	14.7
Marvin Road/Woodgrove	Stop	D	B	13.5
Signalized: LOS = Level of Service of Intersection Delay=Average delay for all Vehicles	LOS = Level of Service of movement with greatest delay			

Source: DKS Associates

[^2]
CHAPTER 3: IMPACTS

This chapter reviews the impacts that the Oak Springs project would have on the study area transportation system. This analysis includes future operating conditions with the proposed project. The focus of the impact analysis is on the study intersections, which have been previously documented.

Trip Distribution

Trip distribution provides an estimation of where the additional project trips would be coming from and going to. It is given as percentages at key gateways to the study area and is used to route project trips through the study area intersections. Trip distribution for the additional traffic generated by the proposed project was based on information provided by the City of Lacey for Thurston Regional Planning Council (TRPC) Zone 76 and extended to the study area based on location of anticipated trip origins and destinations. The trip distribution percentages and resulting project traffic volumes are shown in Figure 3.

Future Traffic Volumes

This section summarizes the peak hour transportation operating conditions for the development buildout year of 2020 and 2022. Future traffic operating conditions were analyzed at the study intersections to determine if the transportation network can support traffic generated by the proposed Oak Springs project, in addition to background traffic and traffic from other developments. If intersection mobility standards are not met, then mitigations may be necessary to improve network performance.

Future weekday PM peak hour traffic volumes without the proposed Oak Tree Preserve residential project were estimated for buildout year 2020 conditions. Future traffic volumes at the study intersections were developed by (1) applying background annual growth rates to existing PM peak hour traffic counts, and (2) adding traffic from approved pipeline project developments.

For this study, base and future year TRPC model plots were used to estimate growth rates at study intersections approaches. For the key segments of Marvin Road SE, the growth rates varied between 1.7% and 3.3% for northbound volume, and between 3.0% and 4.6% for southbound volumes. The previous Oak Springs study used a 2.7% annual growth rate for all volumes. Future pipeline project traffic volumes were provided by the city for all five study intersections, and are shown in Figure 4. The weekday PM peak hour traffic volumes for year 2020 without the project are shown in Figure 5.

Adding the project-generated PM peak hour trips to the future PM peak hour volumes with background and pipeline growth results in the 2020 With Project traffic volumes shown in Figure 6. Traffic volumes with an additional two years of background growth, to 2022, are shown in Figure 7.

Intersection Operations

Operations were analyzed at the five intersections for three scenarios:

- 2020 PM Peak Hour Baseline (volumes shown in Figure 5)
- 2020 PM Peak Hour with Oak Springs Development (volumes shown in Figure 6)
- 2022 PM Peak Hour with Oak Springs Development (volumes shown in Figure 7)

The study intersection operating conditions, including level of service and delay, are shown in Table 7.
Table 7: Future Intersection Operations

Source: DKS Associates
2020 Baseline conditions include background traffic growth and pipeline developments, including Oak Tree Preserve. Analysis shows that with these baseline conditions and without the Oak Springs development trips, three intersections fail to meet the LOS D operating standard in the PM peak hour: Marvin Road SE/Pacific Avenue SE, Marvin Road SE/Union Mills SE, and Marvin Road SE/ $19^{\text {th }}$ Avenue SE. The Oak Springs development adds a relatively low number of trips to the study intersections compared to the 2020 background growth and pipeline development trips. Therefore, intersection operations under 2020 PM peak conditions with the Oak Springs development are only slightly worse than the baseline, with the same three intersections failing to meet standards and the other two (Pacific Avenue SE/Union Mills SE and Marvin Road SE/Woodgrove Street SE) continuing to operate better than standard.

2022 PM peak operations with full development include an additional two years of background growth. The additional growth has little relative impact on the operations of the five intersections. The three intersections that fail to meet standard due to 2020 background and pipeline growth continue to do so.

CHAPTER 4: PROJECT MITIGATION

This chapter summarizes the mitigations recommended to address deficiencies identified in the future year analysis. Previous impact studies for the Oak Tree Preserve development and Oak Springs development recommended mitigations based on impacts to the adjacent transportation system. These previous recommendations were reviewed as part of developing the following mitigation strategies.

Mitigation Recommendations for Oak Springs TIA

Three intersections fail to meet mobility standards under 2020 baseline PM peak conditions, and perform slightly worse with the Oak Springs development and two additional years of background growth. The three intersections and recommended mitigations strategies are as follows:

- Marvin Road SE/Pacific Avenue SE. The eastbound and southbound approaches at this roundabout fail under 2020 Baseline PM conditions, which include background traffic growth and trips from nearby development projects such as Oak Tree Preserve. The Oak Tree Preserve development proposed no mitigations at this intersection, and WSDOT currently has no plans for adding capacity to this two-lane roundabout. Should WSDOT identify a need for additional capacity, mitigation could include a proportionate share contribution based Oak Springs development trips.
- Marvin Road SE/Union Mills Road SE. High delay for the stop-controlled eastbound approach is due to infrequent gaps in the heavy southbound traffic as well as conflicting northbound left turns. This deficiency occurs under 2020 Baseline PM conditions, prior to addition of Oak Springs trips. This intersection is identified for mitigation in the Oak Tree Preserve TIA, with access control that will prohibit eastbound left turns, which have the highest delays. The Oak Springs development may be conditioned to contribute to this mitigation in proportion to the relative number of trips it is adding to the intersection. Under 2020 PM conditions, this proportion is 60 new trips out of a total of 1,047 new trips, or about 6\% of the traffic growth at the intersection. The Oak Springs developer will coordinate with the Oak Tree Preserve developer to pay proportionate share of the improvement or construct the improvement if not completed before the issuance of building permits. To accommodate vehicles needing to make an eastbound left turn, improvements at the Marvin Road SE/19th Avenue SE intersection are needed in order to enable u-turns. A roundabout, as described below, will accommodate u-turns, or if a signal is installed, the intersection should be improved to the width needed to allow u-turns. The Oak Tree Preserve TIA defers decision on the specific type of improvement at Marvin Road SE/19th Avenue SE to the County Engineer.
- Marvin Road SE/19 ${ }^{\text {th }}$ Avenue SE. High delay for the stop-controlled eastbound and westbound approaches is due to infrequent gaps in the heavy southbound traffic on Marvin Road SE. This deficiency occurs under 2020 Baseline PM conditions, prior to addition of Oak Springs trips. New intersection control (signal or roundabout) is a required mitigation for the Oak Tree Preserve development, and is to be constructed with Phase 2 (year 2018) ${ }^{6}$. The Oak Springs development may be conditioned to contribute to this mitigation in proportion to the relative number of trips it is adding to the intersection. Under 2020 PM conditions, this proportion is 52 new trips out of a total of 1,003 new trips, or about 5% of the traffic volume growth at the intersection. The Oak Springs developer will coordinate with the Oak Tree Preserve developer to pay proportionate

[^3]share of the improvement or construct the improvement if not completed before the issuance of building permits.

The Marvin Road SE/19th Avenue SE intersection was analyzed as a signalized intersection in order to test the identified mitigation under 2020 and 2022 PM peak hour conditions. Results are shown in Table 8.

Table 8: Future Mitigated Intersection Operations

Intersection	Intersection Control	Operating Standard	2020 PM Peak(with Oak Springs)		2022 PM Peak (Full Development)	
			LOS	Delay	LOS	Delay
Marvin Road SE/ $19^{\text {th }}$ Avenue SE	Signalized	D	C	31.8	D	35.0
Signalized: LOS = Level of Service of Intersection Delay=Average delay for all Vehicles			Two-Way or All-Way Stop Controlled: LOS = Level of Service of movement with greatest delay			

Source: DKS Associates
With a new signal, the intersection operates acceptably under both 2020 and 2022 PM peak conditions with the Oak Springs development traffic.

Additional mitigations beyond intersection improvements include:

- Payment of Thurston County traffic impact fees. The subject development is in the Urban Growth Area Transportation Service Area (TSA) of Thurston County's TIF program. The TIF rate for Single Family Detached units is $\$ 3,243$ per unit. With 89 units, the total TIF responsibility would be $\$ 288,627$. Note that Thurston County's current six-year Transportation Improvement Program (2016-2021) includes the Marvin Road (Pacific Avenue to Mullen Road) project, which includes construction of intersection improvements at multiple locations, including the intersections that have been identified for mitigation in this study.
- Payment of City of Lacey traffic impact fees as specified in City review of this TIA. Note that the City of Lacey considers Marvin Road a "strategic corridor" in its 2030 Transportation Plan, meaning it would be exempt from LOS requirements.

APPENDIX

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)
(7) Site: 2016 Existing Conditions

Pacific avenue/Marvin Rd
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	11.7	11.3	18.6	20.4	16.2
B	B	C	C	C	

$\xrightarrow[185]{\rightarrow}$

Colour code based on Level of Service
LOS LOSB LOSC LOSD LOSE LOSF Continuous

Level of Service Method: Delay \& v/c (HCM 2010)
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Level of Service Method: Same as Sign Control
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Processed: Thursday, July 14, 2016 4:05:35 PM Copyright © 2000-2014 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 6.0.24.4877 www.sidrasolutions.com
Project: X:\Projects\2015IP15155-000 (Lacey Oak Springs Dev)\DKSISidral2016 Baseline.sip6
8000281, 6019144, DKS ASSOCIATES, PLUS / Floating

SIDRA
INTERSECTION 6

Minor Lane/Major Mymt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	885	-366	-	-	
HCM Lane V/C Ratio	0.075	-0.383	-	-	
HCM Control Delay (s)	9.4	-20.8	-	-	
HCM Lane LOS	A	-	C	-	-
HCM 95th \%tile Q(veh)	0.2	-	1.8	-	-

Intersection	2.7
Int Delay, s/veh	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	16	0	4	9	0	81	4	313	6	118	611	19
Confilcting Peds, \#/hr	1	0	3	3	0	1	0	0	4		0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	.	.	None	.	-	None	-	.	None	-		None
Storage Length		.					105	-	.	100	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	.	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2	2	2	4	2	2	2	2	2	2
Mumt Flow	18	0	4	10	0	89	4	344	7	130	671	21

Major/Minor	Minor2		Minor1			Major 1			Major2			
Conflicting Flow All	1348	1306	689	1305	1314	354	695	0	0	354	0	0
Stage 1	944	944	-	359	359	-	-	.	-	.	-	
Stage 2	404	362	-	946	955	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.24	4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	.	6.12	5.52	.	.	-	-		-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.336	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	128	160	446	137	158	685	901	-	-	1205	-	
Stage 1	315	341	.	659	627	.	.	-	-		-	
Stage 2	623	625	-	314	337	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	
Mov Cap-1 Maneuver	101	141	443	123	140	681	898	-	-	1201	-	
Mov Cap-2 Maneuver	101	141		123	140		.	-	-	.	-	
Stage 1	313	303	-	654	623	-	-	-	-	-	-	
Stage 2	537	621	-	276	300	-	-	-	-		-	

Approach	EB	WB	NB	SB
HCM Control Delay, s	42	14.7	0.1	1.3
HCM LOS	E	B		

Minor Lane/Major Mumt	NBL	NBT	NBR EBLnTWBLn1	SBL	SBT	SBR	
Capacity (veh/h)	898	-	-	119	468	1201	-
HCM Lane V/C Ratio	0.005	-	-0.185	0.211	0.108	-	-
HCM Control Delay (s)	9	-	-	42	14.7	8.4	-
HCM Lane LOS	A	-	-	E	B	A	-
HCM 95th \%tile Q(veh)	0	-	-	0.6	0.8	0.4	-
Q							

Intersection		
Int Delay, s/veh	1.9	

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	85	365	203	18	22	28
Conflicting Peds, \#/hr	0	0	0	0	4	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	- None	- None	-	None		
Storage Length	105	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	0	-	
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2	2	4	2
Mvmt Flow	93	401	223	20	24	31

Major/Minor	Major1		Major2		Minor2	
Conflicicting Flow All	247	0	-	0	825	237
\quad Stage 1	-	-	-	-	237	-
Stage 2	-	-	-	-	588	-
Critical Hdwy	4.12	-	-	-	6.44	6.22
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2	-	-	-	-	54	-
Follow-up Hdwy	2.218	-	-	-	3.536	3.318
Pot Cap-1 Maneuver	1319	-	-	-	340	802
Stage 1	-	-	-	-	798	-
Stage 2	-	-	-	-	551	-
Platoon blocked, \%		-	-			
Mov Cap-1 Maneuver	1319	-	-	-	314	799
Mov Cap-2 Maneuver	-	-	-	-	314	-
Stage 1	-	-	-	-	795	-
Stage 2	-	-	-	-	510	-

Approach	EB	WB	SB
HCM Control Delay,s	1.5	0	13.5
HCM LOS			B

Minor Lane/Major Mumt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1319	-	-	-476
HCM Lane V/C Ratio	0.071	-	-	-0.115
HCM Control Delay (s)	7.9	-	-	-13.5
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q Q (veh)	0.2	-	-	-
(v)	0.4			

	\rightarrow	\％	\checkmark	－	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	釆食		\％	种	\％	\％	
Volume（vph）	877	402	24	771	258	27	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Total Lost time（s）	4.0		4.0	4.0	4.0	4.0	
Lane Utill．Factor	0.95		1.00	0.95	1.00	1.00	
Frpb，ped／bikes	0.99		1.00	1.00	1.00	1.00	
Flpb，ped／bikes	1.00		1.00	1.00	1.00	1.00	
Fit	0.95		1.00	1.00	1.00	0.85	
Flt Protected	1.00		0.95	1.00	0.95	1.00	
Satd．Flow（prot）	3350		1769	3539	1770	1553	
Flt Permitted	1.00		0.95	1.00	0.95	1.00	
Satd．Flow（perm）	3350		1769	3539	1770	1553	
Peak－hour factor，PHF	0.96	0.96	0.96	0.96	0.96	0.96	
Adj．Flow（vph）	914	419	25	803	269	28	
RTOR Reduction（vph）	80	0	0	0	0	17	
Lane Group Flow（vph）	1253	0	25	803	269	11	
Confl．Peds．（\＃hr）		1	1		2		
Heavy Vehicles（\％）	2\％	2\％	2\％	2\％	2\％	4\％	
Turn Type	NA		Prot	NA	Prot	Perm	
Protected Phases	4		3	8	2		
Permitted Phases						2	
Actuated Green，G（s）	24.0		0.6	28.6	12.5	12.5	
Effective Green， $\mathrm{g}(\mathrm{s})$	24.0		0.6	28.6	12.5	12.5	
Actuated g／C Ratio	0.49		0.01	0.58	0.25	0.25	
Clearance Time（s）	4.0		4.0	4.0	4.0	4.0	
Vehicle Extension（s）	3.0		3.0	3.0	3.0	3.0	
Lane Gip Cap（vph）	1637		21	2061	450	395	
v／s Ratio Prot	c0．37		0.01	c0．23	c0．15		
v／s Ratio Perm						0.01	
v／c Ratio	0.77		1.19	0.39	0.60	0.03	
Uniform Delay，d1	10.2		24.2	5.5	16.1	13.7	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay，d2	2.2		261.4	0.1	2.1	0.0	
Delay（s）	12.4		285.6	5.7	18.2	13.8	
Level of Service	B		F	A	B	B	
Approach Delay（s）	12.4			14.1	17.8		
Approach LOS	B			B	B		
Intersection Summary							
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			13.7		HCM 2000	Level of Service	B
			0.72				
Actuated Cycle Length（s）			49.1		Sum of lost	time（s）	12.0
Intersection Capacity Utilization			58．1\％		CU Level	fervice	B
Analysis Period（min）			15				
c Critical Lane Group							

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)
\square Site: 2020 Baseline
Pacific avenue/Marvin Rd
Roundabout

All Movement Classes

	South	East	North	West	Intersection
22.5	19.5	83.3	108.3	65.1	
LOS	C	C	F	F	F

Level of Service Method: Delay \& v/c (HCM 2010)
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Level of Service Method: Same as Sign Control
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Processed: Thursday, July 14, 2016 4:09:14 PM SIDRA INTERSECTION 6.0.24.4877
Project: X:IProjects\2015\P15155-000 (Lacey Oak Springs Dev)\DKSISidral2020 Baseline.sip6 8000281, 6019144, DKS ASSOCIATES, PLUS / Floating

SIDRA
INTERSECTION 6

Intersection						
Int Delay, s/veh	73					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	53	168	85	655	1186	39
Confilicting Peds, \#/hr	0	1	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	.	180	-	-	.
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	6
Mumt Flow	58	183	92	712	1289	42
Major/Minor	Minor2		Majort		Major2	
Conflicting Flow All	2208	1311	1333	0	-	0
Stage 1	1311	.	.	.	-	.
Stage 2	897	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	.
Critical Hdwy Stg 1	5.42	.	.	-	-	-
Critical Hdwy Stg 2	5.42	$\stackrel{\circ}{\circ}$	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	~ 49	194	518	-	-	-
Stage 1	252	-	.	-	-	-
Stage 2	398	-	-	-	-	-
Platoon blocked, \%				.	-	-
Mov Cap-1 Maneuver	~ 40	194	518	-	-	-
Mov Cap-2 Maneuver	~ 40	.	.	-	-	-
Stage 1	252	-	-	-	-	-
Stage 2	327	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	$\$ 717.3$	1.5	0

Intersection												
Int Delay, s/veh 23.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	16	0	4	10	0	193	4	442	9	342	981	23
Conflicting Peds, \#/hr	1	0	3	3	0	1	0	0	4	4	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	.		None	.	.	None	.		None	.		None
Storage Length	-	-	.	-	-	.	105	-	.	100	-	
Veh in Median Storage, \#	-	0		-	0	-	.	0		-	0	
Grade, \%	-	0	-		0	-	-	0		-	0	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2	2	2	4	2	2	2	2	2	2
Mumt Flow	18	0	4	11	0	212	4	486	10	376	1078	25
Major/Minor	Minor2			Minor1			Major 1			Major2		
Confilicting Flow All	2453	2352	1098	2350	2360	498	1106	0	0	499	0	0
Stage 1	1845	1845	-	502	502	-	
Stage 2	608	507	-	1848	1858	-		-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.24	4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	.	6.12	5.52	-	.	-	-	.	-	
Critical Hdwy Stg 2	6.12	5.52	\cdot	6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.336	2.218	-		2.218	-	
Pot Cap-1 Maneuver	21	36	259	25	35	568	631	-	-	1065	-	
Stage 1	96	125		552	542	-	.	-	-	-	-	
Stage 2	483	539	-	96	123	-	-	-	-	-	-	
Platoon blocked, \%								-	-			
Mov Cap-1 Maneuver	~ 9	23	257	18	22	565	629	-	-	1061	-	
Mov Cap-2 Maneuver	~ 9	23		18	22	-	.	-	.	.	.	
Stage 1	95	81		547	537	-	-	-	-	-	-	
Stage 2	299	534	-	61	79	-	-	-	-	-	-	

Approach	EB	WB	NB	SB
HCM Control Delay, s	$\$ 1143.9$	102.2	0.1	2.6
HCM LOS	F	F		

Intersection						
Int Delay, s/veh	1.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	91	531	319	20	23	29
Conflicting Peds, \#/hr	0	0	0	0	4	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	.	None	-	None
Storage Length	105	-		.	0	
Veh in Median Storage, \#	.	0	0	-	0	
Grade, \%		0	0	-	0	.
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2	2	4	2
Mumt Flow	100	584	351	22	25	32
Major/Minor	Major 1		Major2		Minor2	
Conflicting Flow All	377	0	-	0	1150	366
Stage 1	.	.	-	.	366	.
Stage 2		-	-	-	784	
Critical Hdwy	4.12	-	-	-	6.44	6.22
Critical Hdwy Stg 1		-	-	-	5.44	.
Critical Hdwy Stg 2		-	-	-	5.44	-
Follow-up Hdwy	2.218	-	-	-	3.536	3.318
Pot Cap-1 Maneuver	1181	-	-	-	217	679
Stage 1	.	-	-	-	697	.
Stage 2	-	-	-	-	446	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1181	-	-	-	197	677
Mov Cap-2 Maneuver		-	-	-	197	-
Stage 1	-	-	-	-	695	-
Stage 2	-	-	-	-	407	

Approach	EB	WB	SB
HCM Control Delay, s	1.2	0	18.4
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1181	\cdot	-	-326
HCM Lane V/C Ratio	0.085	-	-	-0.175
HCM Control Delay (s)	8.3	-	-	-18.4
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q(veh)	0.3	-	-	-
C	0.6			

	\rightarrow	\%	\%	-	啢	\%	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	\$1		\%	紬	\%	${ }^{\prime \prime}$	
Volume (vph)	878	417	24	772	267	27	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	4.0		4.0	4.0	4.0	4.0	
Lane Util. Factor	0.95		1.00	0.95	1.00	1.00	
Frpb, ped/bikes	0.99		1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00		1.00	1.00	1.00	1.00	
Fit	0.95		1.00	1.00	1.00	0.85	
Flt Protected	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (prot)	3345		1769	3539	1770	1553	
Flt Permitted	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (perm)	3345		1769	3539	1770	1553	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	
Adj. Flow (vph)	915	434	25	804	278	28	
RTOR Reduction (vph)	85	0	0	0	0	16	
Lane Group Flow (vph)	1264	0	25	804	278	12	
Confl. Peds. (\#/hr)		1	1		2		
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	4\%	
Turn Type	NA		Prot	NA	Prot	Perm	
Protected Phases	4		3	8	2		
Permitted Phases						2	
Actuated Green, G (s)	24.1		0.6	28.7	12.7	12.7	
Effective Green, g (s)	24.1		0.6	28.7	12.7	12.7	
Actuated g/C Ratio	0.49		0.01	0.58	0.26	0.26	
Clearance Time (s)	4.0		4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	1631		21	2056	455	399	
v/s Ratio Prot	c0.38		0.01	c0.23	c0.16		
v/s Ratio Perm						0.01	
v/c Ratio	0.77		1.19	0.39	0.61	0.03	
Uniform Delay, d1	10.4		24.4	5.6	16.2	13.7	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	2.4		261.4	0.1	2.4	0.0	
Delay (s)	12.8		285.8	5.7	18.6	13.8	
Level of Service	B		F	A	B	B	
Approach Delay (s)	12.8			14.2	18.2		
Approach LOS	B			B	B		
Intersection Summary							
HCM 2000 Control Delay			13.9		M 2000	vel of Service	B
HCM 2000 Volume to Capacity ratio			0.73				
Actuated Cycle Length (s)			49.4		of los	me (s)	12.0
Intersection Capacity Utilization			59.1\%		Level	Service	B
Analysis Period (min)			15				
c Critical Lane Group							

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)
Site: 2020 with Oak Springs
Pacific avenue/Marvin Rd
Roundabout

All Movement Classes

	South	East	North	West	Intersection
22.9	20.0	88.4	108.9	67.6	
LOS	C	C	F	F	F

$\underset{881}{\sim}{\underset{88}{\square}}_{\square}^{\square}$

$$
\begin{aligned}
& 22.7 \\
& 315
\end{aligned}
$$

Level of Service Method: Delay \& v/c (HCM 2010)
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Level of Service Method: Same as Sign Control
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Processed: Thursday, July 14, 2016 4:14:24 PM SIDRA INTERSECTION 6.0.24.4877
Project: X:IProjectsI2015IP15155-000 (Lacey Oak Springs Dev)\DKSISidral2020 with Oak Springs.sip6 8000281, 6019144, DKS ASSOCIATES, PLUS / Floating

Intersection												
Int Delay, s/veh 28.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	16	0	4	10	0	193	4	464	9	342	1019	23
Conflicting Peds, \#hr	1	0	3	3	0	1	0	0	4	4	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	.	-	None	-		None	.	.	None	.		None
Storage Length	-	-	.	-	.	.	105		.	100		
Veh in Median Storage, \#	-	0	-	-	0	-	.	0	-	.	0	
Grade, \%	-	0	-	-	0	-		0	-		0	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2	2	2	4	2	2	2	2	2	2
Mumt Flow	18	0	4	11	0	212	4	510	10	376	1120	25
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	2520	2419	1139	2416	2427	522	1148	0	0	523	0	0
Stage 1	1887	1887		527	527			-	-	.	.	
Stage 2	633	532	-	1889	1900	-	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.24	4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	.	6.12	5.52	-						
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.336	2.218	-	-	2.218		
Pot Cap-1 Maneuver	19	32	245	22	32	551	609	-	-	1043	-	
Stage 1	91	119	.	535	528	.						
Stage 2	468	526	-	90	117	-	-	-	-	-	-	
Platoon blocked, \%								-	-			
Mov Cap-1 Maneuver	~ 8	20	244	15	20	548	607	-	-	1040	-	
Mov Cap-2 Maneuver	~ 8	20	-	15	20							
Stage 1	90	76		530	523			-				
Stage 2	284	521	-	56	75	-		-	-			

Approach	EB	WB	NB	SB
HCM Control Delay, s	$\$ 1289.2$	F	F	F

Notes
\sim : Volume exceeds capacily

Intersection	
Int Delay, s/veh	2.6

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	130	531	319	34	31	52
Conflicting Peds, \#/hr	0	0	0	0	4	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	105	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	0	0	-	0	-	
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2	2	4	2
Mumt Flow	143	584	351	37	34	57

Major'Minor	Major1	Malor2				
Conflicting Flow All	392	0	-	0	1242	373
Stage 1	-	-	-	-	373	-
Stage 2	-	-	-	-	869	-
Critical Hdwy	4.12	-	-	-	6.44	6.22
Critical Hdwy Stg 1	-	-	-	-	5.44	-
Critical Hdwy Stg 2	-	-	-	-	5.44	-
Follow-up Hdwy	2.218	-	-	-	3.536	3.318
Pot Cap-1 Maneuver	1167	-	-	191	673	
Stage 1	-	-	-	-	692	-
Stage 2	-	-	-	-	407	-
Platoon blocked, \%		-	-	-	166	671
Mov Cap-1 Maneuver	1167	-	-	-	166	-
Mov Cap-2 Maneuver	-	-	-	-	690	-
Stage 1	-	-	-	-	356	-

Approach	EB	WB	SB
HCM Control Delay, S	1.7	0	21.1
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLnt	
Capacity (veh/h)	1167	-	-	-	314
HCM Lane V/C Ratio	0.122	-	-	-	0.29
HCM Control Delay (s)	8.5	-	-	-	21.1
HCM Lane LOS	A	-	-	-	C
HCM 95th \%tile Q(veh)	0.4	-	-	-	1.2

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)
Site: Pacific avenue/Marvin Rd
New Site
Roundabout

All Movement Classes

	South	East	North	West	Intersection
LOS	D	20.9	106.9	119.6	78.8
L	F	F	F		

Marvin Rd SE

24.9

LOSA LOSB LOSC LOSD LOSE LOSF Continuous

Level of Service Method: Delay \& v/c (HCM 2010)
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Level of Service Method: Same as Sign Control
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Processed: Thursday, July 14, 2016 4:17:59 PM	Copyright © 2000-2014 Akcelik and Associates Pty Ltd
SIDRA INTERSECTION 6.0.24.4877	www.sidrasolutions.com
Project: X:IProjectsl2015IP15155-000 (Lacey Oak Springs Dev)\DKSISidral2022 with full development.sip6	
8000281, 6019144, DKS ASSOCIATES, PLUS / Floating	

8000281, 6019144, DKS ASSOCIATES, PLUS / Floating

Intersection		
Int Delay, s/veh $\quad 120.3$		

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	55	198	98	692	1264	41
Conflicting Peds, \#/hr	0	1	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	.	None
Storage Length	0	.	180	.	-	.
Veh in Median Storage, \#	0	-	.	0	0	-
Grade, \%	0	-	-	0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	6
Mumt Flow	60	215	107	752	1374	45
Major/Minor	Minor2		Majort		Major2	
Conflicting Flow All	2362	1397	1419	0	-	0
Stage 1	1397	.	.	.	-	.
Stage 2	965	-	-	.	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	.	.	-	-	-
Critical Hdwy Stg 2	5.42	-	\cdot	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	~ 39	~ 173	480	-	-	-
Stage 1	229	.	.	-	-	-
Stage 2	370	-	-	-	-	-
Platoon blocked, \%				.	.	.
Mov Cap-1 Maneuver	~ 30	~ 173	480	-	-	-
Mov Cap-2 Maneuver	~ 30	.	.	-	-	-
Stage 1	229	-	-	.	-	-
Stage 2	287				-	

Approach	EB	NB	SB
HCM Control Delay, s	$\$ 1111.2$	1.8	0
HCM LOS	F		

Intersection														
Int Delay, s/veh	33.5													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL		NBT	NBR	SBL	SBT	SBR
Vol, veh/h	16	0	4		10	a	190		4	474	10	353	1076	24
Conflicting Peds, \#/hr	1	0	3		3	0	1		0	0	4	4	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Free	Free	Free
RT Channelized	.		None		.		None		.	.	None	.		None
Storage Length					-	-	.		105		.	100	-	
Veh in Median Storage, \#		0			-	0	-		.	0	-	.	0	
Grade, \%		0			-	0	-			0	-	-	0	
Peak Hour Factor	91	91	91		91	91	91		91	91	91	91	91	91
Heavy Vehicles, \%	2	2	2		2	2	4		2	2	2	2	2	2
Mumt Flow	18	0	4		11	0	209		4	521	11	388	1182	26
Major/Minor	Minor2				Minor1				Major1			Major2		
Conflicting Flow All	2617	2518	1203		2515	2526	533		1212	0	0	535	0	0
Stage 1	1974	1974			538	538	-		.	-	-	.		
Stage 2	643	544			1977	1988	-		-	-	-			
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.24		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52					-	.		
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	-		-	-	-	-		
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.336		2.218	-		2.218		
Pot Cap-1 Maneuver	~ 16	28	225		19	28	543		576	-	*	1033	-	
Stage 1	81	108			527	522	.		.	-	-	.		
Stage 2	462	519			80	106	-		-	-	-			
Platoon blocked, \%														
Mov Cap-1 Maneuver	~ 7	17	224		13	17	540		574	-	-	1030	-	
Mov Cap-2 Maneuver	~ 7	17			13	17	.							
Stage 1	80	67			522	517	-		-					
Stage 2	280	514			49	66	-		-	-	-	-	-	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	\$1467.6				196.5				0.1			2.6		
HCM LOS	F				F									
Minor Lane/Major Mumt	NBL	NBT	NBR EBLnTWBL 1			SBL	SBT	SBR						
Capacity (veh/h)	574			9	178	1030								
HCM Lane V/C Ratio	0.008	-		2.442	1.235	0.377	-							
HCM Control Delay (s)	11.3	-		1467.6	196.5	10.6	-							
HCM Lane LOS	B	-		F	F	B	-							
HCM 95th \%tile Q(veh)	0	-		3.8	12.1	1.8	-							
Notes														

Intersection	2.6	
Int Delay, s/veh		

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Vol, veh/h	134	544	330	35	31	52
Conflicting Peds, \#hr	0	0	0	0	,	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	.	None	.	None
Storage Length	105	.	-	.	0	.
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	,	0	-	0	-
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, \%	2	,	2	2	4	2
Mumt Flow	147	598	363	38	34	57
Major/Minor	Major 1		Major2		Minor2	
Conflicting Flow All	405	0	.	0	1278	386
Stage 1		-	-	.	386	.
Stage 2		-	-	-	892	\cdot
Critical Hdwy	4.12	-	-	-	6.44	6.22
Critical Hdwy Stg 1	.	-	-	-	5.44	
Critical Hdwy Stg 2	-	-	-	-	5.44	-
Follow-up Hdwy	2.218	-	-	-	3.536	3.318
Pot Cap-1 Maneuver	1154	-	-	-	182	662
Stage 1	.	-	-	-	683	
Stage 2	-	-	-	-	397	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1154	-	-	-	158	660
Mov Cap-2 Maneuver	.	-	-	-	158	-
Stage 1	-	-	-	-	681	-
Stage 2		-	-	-	345	

Approach	EB	WB	SB
HCM Control Delay, s	1.7	0	22
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1	
Capacity (veh/h)	1154	-	-	-302
HCM Lane V/C Ratio	0.128	-	-	-0.302
HCM Control Delay (s)	8.6	-	-	-
HCM Lane LOS	A	-	-	-
HCM	C			
H5th \%tile Q(veh)	0.4	-	-	-
Q	1.2			

	\%	\rightarrow	\bigcirc	\square	-	+	-	1	7	\checkmark	\downarrow	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		\%	1		\%	个	
Volume (veh/h)	16	0	4	10	-	190	,	474	10	353	1076	24
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh		0	0	0	0	,	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.97	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1829	1900	1863	1863	1900	1863	1863	1900
AdJ Flow Rate, veh/h	18	0	4	11	0	209	4	521	11	388	1182	26
Adj No. of Lanes	0	,	0	0	1	0	1	,	0	1	1	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	34	0	8	12	0	227	135	764	16	426	1270	28
Arrive On Green	0.02	0.00	0.02	0.16	0.00	0.16	0.42	0.42	0.42	0.24	0.70	0.70
Sat Flow, veh/h	1409	0	313	76	0	1440	461	1816	38	1774	1815	40
Grp Volume(v), veh/h	22	0	0	220	0	0	4	0	532	388	0	1208
Grp Sat Flow(s),veh/h/n	1722	0	0	1515	0	0	461	,	1855	1774	0	1855
Q Serve(g_s), s	1.3	0.0	0.0	14.5	0.0	0.0	0.8	0.0	23.6	21.6	0.0	56.9
Cycle Q Clear (g_c), s	1.3	0.0	0.0	14.5	0.0	0.0	29.3	0.0	23.6	21.6	0.0	56.9
Prop In Lane	0.82		0.18	0.05		0.95	1.00		0.02	1.00		0.02
Lane Grp Cap(c), veh/h	42	0	0	239	0	0	135	0	780	426	0	1298
V/C Ratio(X)	0.53	0.00	0.00	0.92	0.00	0.00	0.03	0.00	0.68	0.91	0.00	0.93
Avail Cap(c_a), veh/h	272	0	0	239	0	0	135	-	780	542	0	1389
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter (l)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	48.9	0.0	0.0	42.1	0.0	0.0	37.9	0.0	23.9	37.5	0.0	13.1
Incr Delay (d2), s/veh	10.1	0.0	0.0	37.4	0.0	0.0	0.1	0.0	2.4	16.9	0.0	11.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.7	0.0	0.0	8.5	0.0	0.0	0.1	0.0	12.6	12.6	0.0	32.5
LnGrp Delay(d),s/veh	59.0	0.0	0.0	79.5	0.0	0.0	38.0	0.0	26.3	54.4	0.0	24.1
LnGrp LOS	E			E			D		C	D		C
Approach Vol, veh/h		22			220			536			1596	
Approach Delay, s/veh		59.0			79.5			26.4			31.4	
Approach LOS		E			E			C			C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4		6		8				
Phs Duration ($G+Y+R \mathrm{C})$, s	28.4	46.7		6.4		75.0		20.0				
Change Period ($Y+R C$), s	4.0	4.0		4.0		4.0		4.0				
Max Green Setting (Gmax), s	31.0	41.0		16.0		76.0		16.0				
Max Q Clear Time ($\mathrm{g}_{2} \mathrm{c}+11$), s	23.6	31.3		3.3		58.9		16.5				
Green Ext Time (p_c), s	0.8	7.9		0.0		12.1		0.0				
Intersection Summary												
$\begin{array}{lr}\text { HCM } 2010 \text { Ctrl Delay } & 35.0 \\ \text { HCM } 2010 \text { LOS } & \text { D }\end{array}$												

[^0]: ${ }^{1} 2010$ Highway Capacity Manual, Transportation Research Board, Washington DC, 2010.
 ${ }^{2}$ Oak Springs-Traffic Impact Analysis report, Heath \& Associates, Inc.

[^1]: ${ }^{3}$ A description of Level of Service (LOS) is provided in the appendix and includes a list of the delay values (in seconds) that correspond to each LOS designation.

[^2]: ${ }^{4}$ Thurston County Road Standards
 ${ }^{5} 2010$ Highway Capacity Manual, Transportation Research Board, Washington DC, 2010

[^3]: ${ }^{6}$ Oak Tree Preserve Traffic Impact Analysis, April 29, 2014.

