

May 24, 2023

Jon Beem D.R. Horton 11241 Slater Avenue Northeast, Suite 200 Kirkland, Washington 98033

RE: Arsenic and Lead Soil Sampling and Testing McAllister Springs
2402 Marvin Road Southeast
Lacey, Thurston County, Washington 98503
RGI Project No. 2022-004-3

Dear Jon Beem:

The Riley Group, Inc. (RGI) has conducted Arsenic and Lead Soil Sampling and Testing for the McAllister Springs property located at 2402 Marvin Road Southeast in Lacey, Washington; parcel identification numbers 11823430100, 11826110000, and 11826110300 (hereafter referred to as the Property, Figure 1).

This Arsenic and Lead Soil Sampling and Testing was performed at the request of Jon Beem of D.R. Horton (hereafter referred to as the Client). The scope of work for this project was performed in accordance with our *Arsenic and Lead Soil Sampling and Testing Proposal* (2022-004-PRP2) dated March 24, 2023 and authorized by the Client on April 25, 2023; and also in accordance with the 2019 Tacoma Smelter Plume Guidance.

PROJECT BACKGROUND

The Property is located in an area that may have been contaminated with heavy metals originating from the former Asarco smelter in north Tacoma. The Property is mapped on Ecology's Facility Site Atlas Map in an area with a Predicted Arsenic Concentration (PAC) of 20 milligrams per kilogram (mg/kg) to 40 mg/kg. Ecology's MTCA Method A Cleanup Level (Method A CUL) for arsenic is 20 mg/kg (and the Method A CUL for lead is 250 mg/kg). Soil sampling was recommended to determine if arsenic and/or lead are present at the Property at concentrations exceeding Ecology's Method A CULs.

POTENTIAL CONTAMINANTS OF CONCERN

The following potential contaminants of concern (PCOCs) in soil related to this scope of work were identified for the Property:

- Arsenic
- Lead

SCOPE OF SERVICES

The scope of work for this project was performed in accordance with our proposal, dated March 24, 2023, and included the following:

Performed public utility locating in an attempt to identify the location(s) of buried utility lines servicing the Property.

Corporate Office

17522 Bothell Way Northeast Bothell, Washington 98011 Phone 425.415.0551 • Fax 425.415.0311

- On May 3 and 4, 2023, RGI advanced seventy-seven (77) hand borings (HA1 through HA77) spread throughout the Property. Of the 77 locations, eight (8) were of surficial duff samples. The remaining sixty-nine (69) locations had soil samples collected from 0 to 6 inches below ground surface (bgs), with a subset of 17 of those locations additionally sampled soils from 6 to 12 inches bgs.
- Submitted soil samples for laboratory analysis of PCOCs.
- Compared analytical results to the applicable Method A CULs for soil (WAC 173-340) and the 2019 Tacoma Smelter Plume Guidance.
- > Prepared this report presenting our findings, observations, conclusions, and recommendations.

SHALLOW SUBSURFACE INVESTIGATION

PUBLIC UTILITY LOCATE

At least 48 hours prior to commencing our subsurface investigation, RGI contacted One-Call to locate known public underground utilities on or near the Property. One-Call attempted to locate the following public underground utilities: electric, natural gas, telecommunications, water, sewer, and cable.

SOIL SAMPLING

On May 3 and 4, 2023, RGI advanced seventy-seven (77) hand borings (HA1 through HA77) spread throughout the Property. Of the 77 locations, eight (8) were of surficial duff samples. The remaining sixtynine (69) locations had soil samples collected from 0 to 6 inches bgs, with a subset of 17 of those locations additionally sampled soils from 6 to 12 inches bgs.

SUBSURFACE CONDITIONS

During sampling activities, soil samples were collected, inspected, and classified by RGI's staff. Soil conditions encountered were described using the Unified Soil Classification System (USCS). Shallow subsurface soils encountered during sampling generally consisted of brown silty sand and brown sand with gravel to the maximum depth explored (12 inches bgs). Groundwater or saturated soils were not encountered during this investigation.

SAMPLING PROTOCOLS

All samples were collected in accordance with our standard operating and decontamination procedures. Each sample was transferred from the hand tools into a clean stainless-steel bowl and composited before being transferred to preconditioned, sterilized containers provided by an Ecology-accredited analytical laboratory. All tools and equipment used during soil sampling activities were cleaned in separate wash and rinse buckets prior to and between each sample. Additionally, nitrile gloves were worn during sampling activities and replaced with a clean pair between compositing and collection of each soil sample.

The samples were placed in a chilled cooler throughout the field program, with all subsequent transportation and transfer accomplished in strict accordance with RGI's chain-of-custody procedures. Analytical test certificates, including quality control, data, and chain-of-custody documentation for all samples submitted to the analytical testing laboratory by RGI as part of this soil sampling are included in Appendix A. All soil sample locations were backfilled with excavated material.

LABORATORY ANALYSIS AND RESULTS

Ninety-four (94) soil samples were submitted for laboratory analyses. Soil samples collected during this investigation were submitted to Friedman & Bruya, Inc. of Seattle, Washington, for analysis of total arsenic

and lead using EPA Method 6020B. Soil analytical results are summarized in the attached Table 1 and locations depicted on Figure 2, and are discussed below. Copies of the analytical laboratory report from this investigation and associated sample chain-of-custody forms are included in Appendix A.

Analytical results for the soil samples indicated arsenic concentrations between non-detectable (concentrations below laboratory detection limits) and 21.2 mg/kg, and total lead concentrations between 1.77 mg/kg and 51.8 mg/kg.

Below is a summary of arsenic and lead results for each 6-inch sampling interval and the duff.

Sample Depth (feet)	Arsenic mg/kg (EPA Method 6020B)			Lead mg/kg (EPA Method 6020B)		
	Minimum	Maximum	Average	Minimum	Maximum	Average
0 (duff)	ND < 1	9.92	6.0	1.77	51.8	17.0
0-0.5	1.27	21.2	7.1	2.35	36.7	10.1
0.5-1	2.05	16.5	4.3	2.36	38.0	5.8
MTCA Levels		40	20		500	250

Analytical results for the soil samples analyzed indicated concentrations of arsenic and lead in compliance with the cleanup levels established in the 2019 Tacoma Smelter Plume Guidance.

CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of this investigation, shallow soils intercepted by our hand borings comply with Ecology's MTCA cleanup levels established in the 2019 Tacoma Smelter Plume Guidance. Given the analytical laboratory soil sample results, the Tacoma Smelter Plume has not adversely impacted shallow soil at the Property at the locations and depths tested during this investigation. No further environmental investigation or remediation at the Property regarding the Tacoma Smelter Plume is recommended or warranted.

LIMITATIONS

This report is the property of RGI, Jon Beem of D.R. Horton, and their authorized representatives or affiliates and was prepared in a manner consistent with the level of skill and care ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions. This report is intended for specific application to the McAllister Springs property located at 2402 Marvin Road Southeast in Lacey, Washington; parcel identification numbers 11823430100, 11826110000, and 11826110300. No other warranty, expressed or implied, is made.

The analyses and recommendations presented in this report are based upon data obtained from our review of available information at the time of preparing this report, soil sampling conducted on the Property, or other noted data sources. Conditional changes may occur through time by natural or human-made process on this or adjacent properties. Additional changes may occur in legislative standards, which may or may not be applicable to this report. These changes, beyond RGI's control, may render this report invalid, partially or wholly. If variations appear evident, RGI should be requested to reevaluate the recommendations in this report.

Please contact the undersigned at (425) 415-0551 should you have any questions or need additional information.

Sincerely,

THE RILEY GROUP, INC.

David Stariha Staff Geologist Tait Russell, LG Project Geologist Megan Poysnick, LG

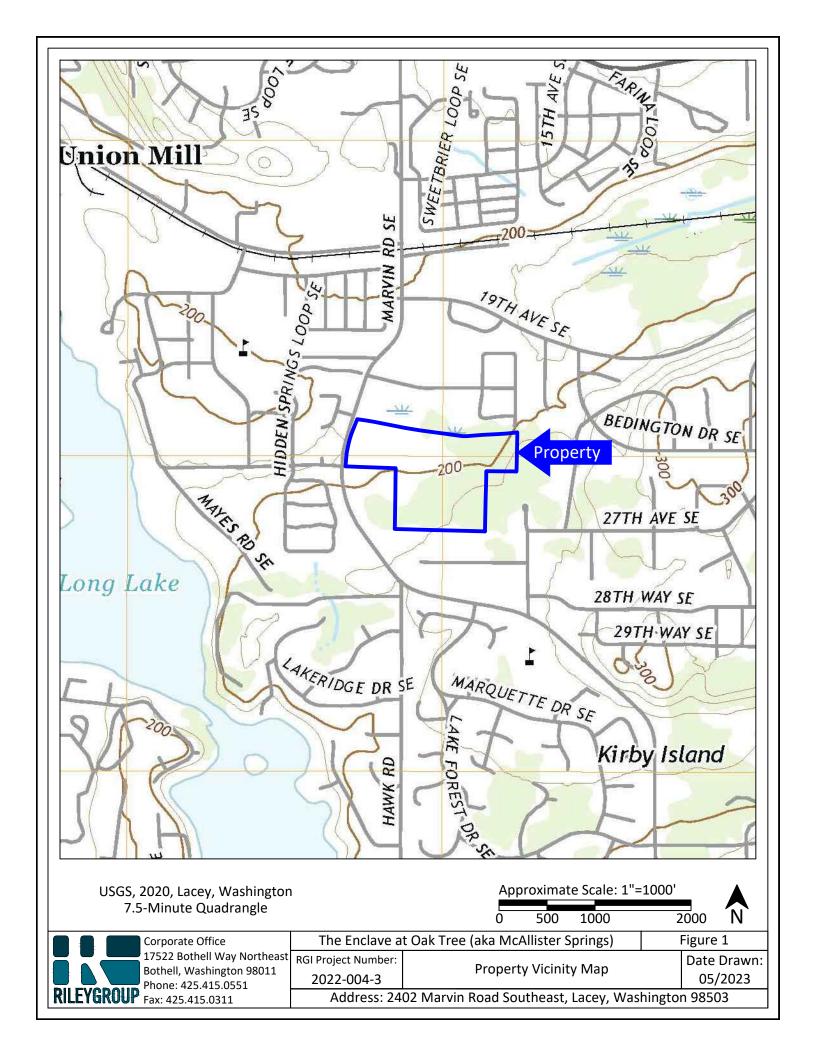
My a kn

Senior Environmental Manager

Distribution:

Jon Beem of D.R. Horton (PDF)

Attachments:


Figure 1, Property Vicinity Map

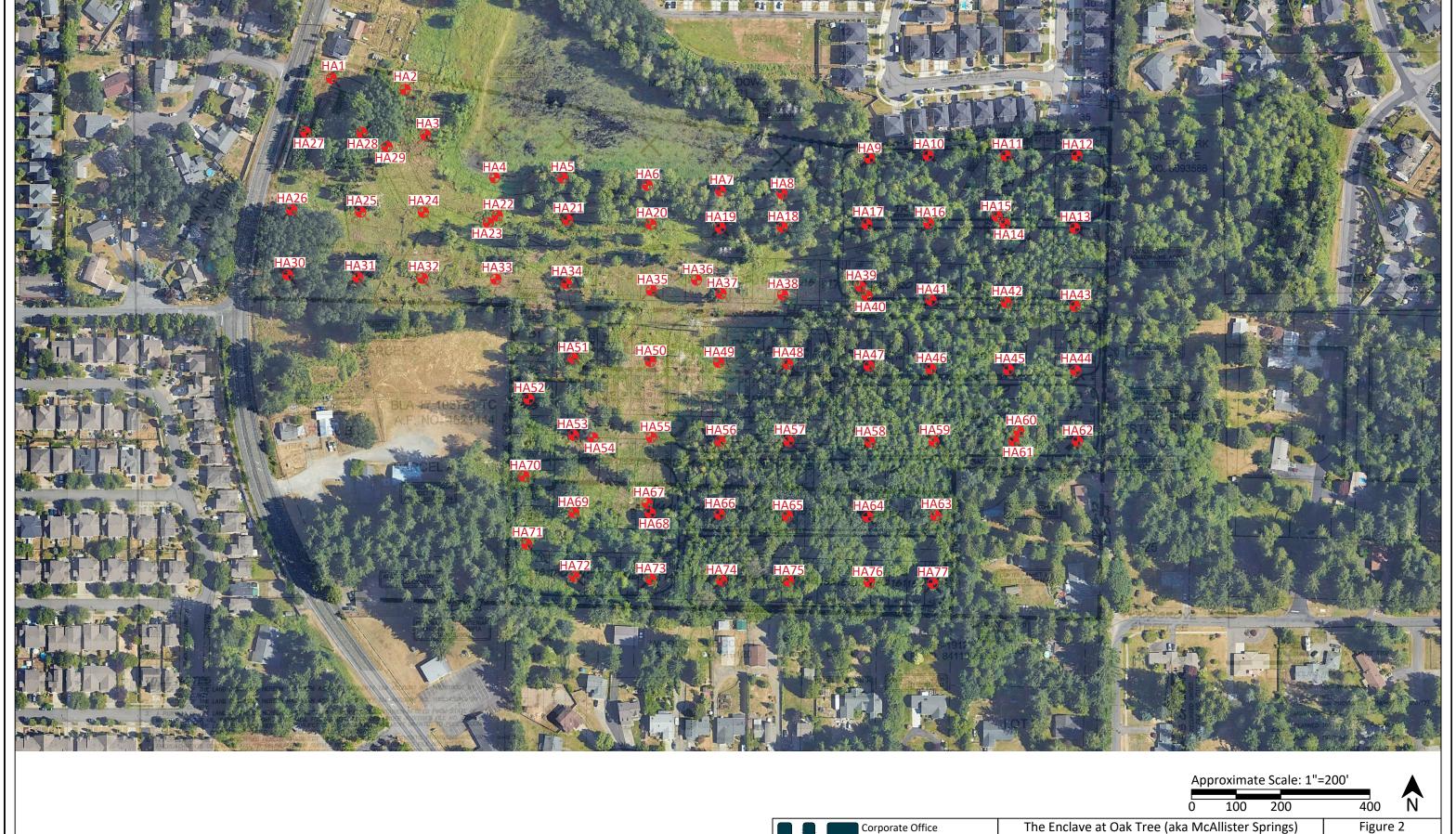

Figure 2, Property Plan and Soil Sample Locations

Table 1, Summary of Soil Sample Analytical Laboratory Results

Appendix A, Analytical Laboratory Reports and Chains of Custody

Corporate Office The Enclave a 17522 Bothell Way Northeast RGI Project Number: 2022-004-3

The Enclave at Oak Tree (aka McAllister Springs)

Property Plan and Soil Sample Locations

Date Drawn:

05/2023 Address: 2402 Marvin Road Southeast, Lacey, Washington 98503

Table 1, Page 1 of 3. Summary of Soil Sample Analytical Laboratory Results
The Enclave at Oak Tree (aka McAllister Springs)
2402 Marvin Road Southeast, Lacey, Washington 98503

The Riley Group, Inc. Project No. 2022-004-3

Coursels	Commis Commis		Total Metals	
Sample Number	Sample Depth	Sample Date	As	Pb
HA1-0.5	0.5	05/03/2023	5.44	10.9
HA2-0.5	0.5	05/03/2023	10.9	15.9
HA3-0.5	0.5	05/03/2023	8.13	13.7
HA4-0.5	0.5	05/03/2023	1.27	9.27
HA5-0.5	0.5	05/03/2023	3.86	12.8
HA6-0.5	0.5	05/03/2023	1.92	13.6
HA7-0.5	0.5	05/03/2023	3.91	4.94
HA8-0.5	0.5	05/03/2023	2.1	5.78
HA9-0.5	0.5	05/03/2023	6.31	7.81
HA10-0.5	0.5	05/03/2023	10.8	35.9
HA11-0.5	0.5	05/03/2023	9.08	4.81
HA12-0.5	0.5	05/03/2023	5.83	7.63
HA13-0.5	0.5	05/03/2023	8.66	7.7
HA14-0.5	0.5	05/03/2023	12.9	16.9
HA14-1	1	05/03/2023	7.63	3.04
HA15-FD	0	05/03/2023	3.07	8.49
HA16-0.5	0.5	05/03/2023	4.96	7.19
HA17-0.5	0.5	05/03/2023	2.95	2.35
HA17-1	1	05/03/2023	3.01	3.87
HA18-0.5	0.5	05/03/2023	5.36	2.91
HA19-0.5	0.5	05/03/2023	7.32	13.3
HA19-1	1	05/03/2023	3.63	2.7
HA20-0.5	0.5	05/03/2023	2.31	2.82
HA21-0.5	0.5	05/03/2023	14.3	11.8
HA21-1	1	05/03/2023	2.79	2.92
HA22-0.5	0.5	05/03/2023	7.54	7.26
HA23-FD	0	05/03/2023	5.92	13.1
HA24-0.5	0.5	05/03/2023	5.84	8.19
HA24-1	1	05/03/2023	5.27	6.53
HA25-0.5	0.5	05/03/2023	7.9	14.8
HA26-0.5	0.5	05/03/2023	8.39	16
HA27-0.5	0.5	05/03/2023	7.71	13.2
HA28-0.5	0.5	05/03/2023	6.91	25.5
MTCA Method A		up Levels for Unrestricted Land Jses	20	250

Table 1, Page 2 of 3. Summary of Soil Sample Analytical Laboratory Results
The Enclave at Oak Tree (aka McAllister Springs)
2402 Marvin Road Southeast, Lacey, Washington 98513

The Riley Group, Inc. Project No. 2022-004-3

Sample Samp		Sample	Total Metals	
Number	Sample Depth	Date	As	Pb
HA28-1	1	05/03/2023	4.1	8.23
HA29-FD	0	05/03/2023	6.34	16.7
HA30-0.5	0.5	05/03/2023	11.5	18
HA31-0.5	0.5	05/03/2023	6.69	6.88
HA31-1	1	05/03/2023	2.39	2.86
HA32-0.5	0.5	05/03/2023	6.33	6.61
HA33-0.5	0.5	05/03/2023	2.56	2.98
HA34-0.5	0.5	05/03/2023	9.82	17.7
HA35-0.5	0.5	05/03/2023	5.01	8.38
HA35-1	1	05/03/2023	3.41	4.62
HA36-FD	0	05/03/2023	4.26	7.13
HA37-0.5	0.5	05/03/2023	2.43	2.97
HA38-0.5	0.5	05/03/2023	6.68	2.88
HA39-FD	0	05/03/2023	9.92	51.8
HA40-0.5	0.5	05/03/2023	6.88	5.24
HA40-1	1	05/03/2023	2.77	2.36
HA41-0.5	0.5	05/03/2023	7.75	18.2
HA42-0.5	0.5	05/03/2023	9.79	4.83
HA43-0.5	0.5	05/03/2023	8.18	4.47
HA43-1	1	05/03/2023	7.4	4.44
HA44-0.5	0.5	05/03/2023	21.2	12.5
HA45-0.5	0.5	05/03/2023	9.77	15.1
HA46-0.5	0.5	05/03/2023	5.17	3.35
HA47-0.5	0.5	05/03/2023	13.7	7.47
HA48-0.5	0.5	05/03/2023	3.22	4.36
HA49-0.5	0.5	05/03/2023	15.3	35.5
HA50-0.5	0.5	05/03/2023	4.16	4.17
HA51-0.5	0.5	05/03/2023	11.6	15.1
HA52-0.5	0.5	05/04/2023	8.85	9.75
HA53-0.5	0.5	05/04/2023	16.2	36.7
HA53-1	1	05/04/2023	16.5	38
HA54-FD	0	05/04/2023	9.43	11.6
HA55-0.5	0.5	05/04/2023	8.53	4.79
MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses		20	250	

Table 1, Page 3 of 3. Summary of Soil Sample Analytical Laboratory Results
The Enclave at Oak Tree (aka McAllister Springs)
2402 Marvin Road Southeast, Lacey, Washington 98503
The Riley Group, Inc. Project No. 2022-004-3

Sample	Sample	Campla	Total I	Metals
Number	Depth	Sample Date	As	Pb
HA56-0.5	0.5	05/04/2023	2.44	2.56
HA56-1	1	05/04/2023	2.16	2.41
HA57-0.5	0.5	05/04/2023	10	11.8
HA58-0.5	0.5	05/04/2023	6.77	4.97
HA58-1	1	05/04/2023	3.22	2.84
HA59-0.5	0.5	05/04/2023	6.24	3.48
HA60-FD	0	05/04/2023	ND<1	1.77
HA61-0.5	0.5	05/04/2023	2.73	3.5
HA61-1	1	05/04/2023	2.5	4.5
HA62-0.5	0.5	05/04/2023	5.67	9.32
HA63-0.5	0.5	05/04/2023	3.42	3.74
HA64-0.5	0.5	05/04/2023	7.1	10
HA65-0.5	0.5	05/04/2023	10.6	12.1
HA66-0.5	0.5	05/04/2023	14.9	21.3
HA67-FD	0	05/04/2023	7.95	25.2
HA68-0.5	0.5	05/04/2023	9.86	13
HA69-0.5	0.5	05/04/2023	10.1	21.9
HA70-0.5	0.5	05/04/2023	4.4	3.03
HA71-0.5	0.5	05/04/2023	3.1	5.27
HA71-1	1	05/04/2023	2.25	2.72
HA72-0.5	0.5	05/04/2023	4.9	6.71
HA73-0.5	0.5	05/04/2023	2.12	2.72
HA74-0.5	0.5	05/04/2023	2.22	3.16
HA74-1	1	05/04/2023	2.05	2.66
HA75-0.5	0.5	05/04/2023	3.03	3.73
HA76-0.5	0.5	05/04/2023	2.82	3.46
HA77-0.5	0.5	05/04/2023	3.44	8.71
HA77-1	1	05/04/2023	2.63	3.09
MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses		20	250	

Notes:

All results and detection limits are given in milligrams per kilogram (mg/kg); equivalent to parts per million (ppm).

Sample Depth = Soil sample depth interval in feet below ground surface (bgs).

Total Metals (As = arsenic, Cd = cadmium, Cr = chromium, Pb = lead, Hg = mercury) determined using EPA Method 6020B.

Bold results indicate concentrations (if any) above laboratory detection limits.

Bold and yellow highlighted results indicate concentrations (if any) that exceed MTCA Method A Soil Cleanup Levels.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 11, 2023

Tait Russell, Project Manager The Riley Group, Inc. 17522 Bothell Way NE Bothell, WA 98011

Dear Mr Russell:

Included are the results from the testing of material submitted on May 5, 2023 from the McAllister 2022-004-3, F&BI 305104 project. There are 108 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures TRG0511R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 5, 2023 by Friedman & Bruya, Inc. from the The Riley Group McAllister 2022-004-3, F&BI 305104 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	The Riley Group
305104 -01	HA1-0.5
305104 -02	HA2-0.5
305104 -03	HA3-0.5
305104 -04	HA4-0.5
305104 -05	HA5-0.5
305104 -06	HA6-0.5
305104 -07	HA7-0.5
305104 -08	HA8-0.5
305104 -09	HA9-0.5
305104 -10	HA10-0.5
305104 -11	HA11-0.5
305104 -12	HA12-0.5
305104 -13	HA13-0.5
305104 -14	HA14-0.5
305104 -15	HA14-1
305104 -16	HA15-FD
305104 -17	HA16-0.5
305104 -18	HA17-0.5
305104 -19	HA17-1
305104 -20	HA18-0.5
305104 -21	HA19-0.5
305104 -22	HA19-1
305104 -23	HA20-0.5
305104 -24	HA21-0.5
305104 -25	HA21-1
305104 -26	HA22-0.5
305104 -27	HA23-FD
305104 -28	HA24-0.5
305104 -29	HA24-1
305104 -30	HA25-0.5
305104 -31	HA26-0.5
305104 -32	HA27-0.5
305104 -33	HA28-0.5
305104 -34	HA28-1
305104 -35	HA29-FD
305104 -36	HA30-0.5

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	The Riley Group
305104 -37	HA31-0.5
305104 -38	HA31-1
305104 -39	HA32-0.5
305104 -40	HA33-0.5
305104 -41	HA34-0.5
305104 -42	HA35-0.5
305104 -43	HA35-1
305104 -44	HA36-FD
305104 -45	HA37-0.5
305104 -46	HA38-0.5
305104 -47	HA39-FD
305104 -48	HA40-0.5
305104 -49	HA40-1
305104 -50	HA41-0.5
305104 -51	HA42-0.5
305104 -52	HA43-0.5
305104 -53	HA43-1
305104 -54	HA44-0.5
305104 -55	HA45-0.5
305104 -56	HA46-0.5
305104 -57	HA47-0.5
305104 -58	HA48-0.5
305104 -59	HA49-0.5
305104 -60	HA50-0.5
305104 -61	HA51-0.5
305104 -62	HA52-0.5
305104 -63	HA53-0.5
305104 -64	HA53-1
305104 -65	HA54-FD
305104 -66	HA55-0.5
305104 -67	HA56-0.5
305104 -68	HA56-1
305104 -69	HA57-0.5
305104 -70	HA58-0.5
305104 -71	HA58-1
305104 -72	HA59-0.5
305104 -73	HA60-FD
305104 -74	HA61-0.5
305104 -75	HA61-1
305104 -76	HA62-0.5
333101 10	111102 0.0

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

<u>Laboratory ID</u>	The Riley Group
305104 -77	HA63-0.5
305104 -78	HA64-0.5
305104 -79	HA65-0.5
305104 -80	HA66-0.5
305104 -81	HA67-FD
305104 -82	HA68-0.5
305104 -83	HA69-0.5
305104 -84	HA70-0.5
305104 -85	HA71-0.5
305104 -86	HA71-1
305104 -87	HA72-0.5
305104 -88	HA73-0.5
305104 -89	HA74-0.5
305104 -90	HA74-1
305104 -91	HA75-0.5
305104 -92	HA76-0.5
305104 -93	HA77-0.5
305104 -94	HA77-1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA1-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-01

 Date Analyzed:
 05/08/23
 Data File:
 305104-01.094

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.44 Lead 10.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-02

 Date Analyzed:
 05/08/23
 Data File:
 305104-02.099

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 10.9 Lead 15.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-03

 Date Analyzed:
 05/08/23
 Data File:
 305104-03.100

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 8.13 Lead 13.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA4-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-04

 Date Analyzed:
 05/08/23
 Data File:
 305104-04.103

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 1.27 Lead 9.27

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-05

 Date Analyzed:
 05/08/23
 Data File:
 305104-05.104

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.86 Lead 12.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-06

 Date Analyzed:
 05/08/23
 Data File:
 305104-06.105

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 1.92 Lead 13.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-07

 Date Analyzed:
 05/08/23
 Data File:
 305104-07.106

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.91 Lead 4.94

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-08

 Date Analyzed:
 05/08/23
 Data File:
 305104-08.107

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.10 Lead 5.78

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-09

 Date Analyzed:
 05/08/23
 Data File:
 305104-09.108

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 6.31 Lead 7.81

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA}10\text{-}0.5 & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-10

 Date Analyzed:
 05/08/23
 Data File:
 305104-10.109

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 10.8 Lead 35.9

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-11

 Date Analyzed:
 05/08/23
 Data File:
 305104-11.110

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 9.08 Lead 4.81

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA12-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-12

 Date Analyzed:
 05/08/23
 Data File:
 305104-12.111

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.83 Lead 7.63

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-13

 Date Analyzed:
 05/08/23
 Data File:
 305104-13.112

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 8.66 Lead 7.70

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA14-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-14

 Date Analyzed:
 05/08/23
 Data File:
 305104-14.115

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 12.9 Lead 16.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA14-1 Client: The Riley Group Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-15

 Date Analyzed:
 05/08/23
 Data File:
 305104-15.116

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.63 Lead 3.04

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-16

 Date Analyzed:
 05/08/23
 Data File:
 305104-16.117

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.07 Lead 8.49

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-17

 Date Analyzed:
 05/08/23
 Data File:
 305104-17.118

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 4.96 Lead 7.19

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-18

 Date Analyzed:
 05/08/23
 Data File:
 305104-18.119

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.95 Lead 2.35

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-19

 Date Analyzed:
 05/08/23
 Data File:
 305104-19.120

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.01 Lead 3.87

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-20

 Date Analyzed:
 05/08/23
 Data File:
 305104-20.121

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.36 Lead 2.91

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-21

 Date Analyzed:
 05/08/23
 Data File:
 305104-21.122

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.32 Lead 13.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-22

 Date Analyzed:
 05/08/23
 Data File:
 305104-22.127

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 3.63 Lead 2.70

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA20-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-23

 Date Analyzed:
 05/08/23
 Data File:
 305104-23.128

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.31 Lead 2.82

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-24

 Date Analyzed:
 05/08/23
 Data File:
 305104-24.129

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 14.3 Lead 11.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-25

 Date Analyzed:
 05/08/23
 Data File:
 305104-25.130

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.79 Lead 2.92

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-26

 Date Analyzed:
 05/08/23
 Data File:
 305104-26.131

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.54 Lead 7.26

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-27

 Date Analyzed:
 05/08/23
 Data File:
 305104-27.132

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.92 Lead 13.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA24-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-28

 Date Analyzed:
 05/08/23
 Data File:
 305104-28.133

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.84 Lead 8.19

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA24-1 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-29

 Date Analyzed:
 05/08/23
 Data File:
 305104-29.134

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.27 Lead 6.53

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-30

 Date Analyzed:
 05/08/23
 Data File:
 305104-30.135

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.90 Lead 14.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA26-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-31

 Date Analyzed:
 05/08/23
 Data File:
 305104-31.136

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 8.39 Lead 16.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-32

 Date Analyzed:
 05/08/23
 Data File:
 305104-32.139

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.71 Lead 13.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA28-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.91 Lead 25.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-34

 Date Analyzed:
 05/08/23
 Data File:
 305104-34.141

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 4.10 Lead 8.23

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-35

 Date Analyzed:
 05/08/23
 Data File:
 305104-35.142

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.34 Lead 16.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA30-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-36

 Date Analyzed:
 05/08/23
 Data File:
 305104-36.143

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 11.5 Lead 18.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA31-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-37

 Date Analyzed:
 05/08/23
 Data File:
 305104-37.144

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.69 Lead 6.88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-38

 Date Analyzed:
 05/08/23
 Data File:
 305104-38.145

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.39 Lead 2.86

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA32-0.5 Client: The Riley Group Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-39

 Date Analyzed:
 05/08/23
 Data File:
 305104-39.146

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.33 Lead 6.61

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA33-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-40

 Date Analyzed:
 05/08/23
 Data File:
 305104-40.147

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.56 Lead 2.98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA34-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-41

 Date Analyzed:
 05/08/23
 Data File:
 305104-41.150

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 9.82 Lead 17.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA35-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-42

 Date Analyzed:
 05/08/23
 Data File:
 305104-42.153

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.01 Lead 8.38

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA35-1 Client: The Riley Group Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-43

 Date Analyzed:
 05/08/23
 Data File:
 305104-43.154

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.41 Lead 4.62

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA36-FD Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-44

 Date Analyzed:
 05/08/23
 Data File:
 305104-44.155

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 4.26 Lead 7.13

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-45

 Date Analyzed:
 05/08/23
 Data File:
 305104-45.156

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 2.43 Lead 2.97

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA38-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-46

 Date Analyzed:
 05/08/23
 Data File:
 305104-46.157

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.68 Lead 2.88

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA39-FD Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-47

 Date Analyzed:
 05/08/23
 Data File:
 305104-47.158

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 9.92 Lead 51.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-48

 Date Analyzed:
 05/08/23
 Data File:
 305104-48.159

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.88 Lead 5.24

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-49

 Date Analyzed:
 05/08/23
 Data File:
 305104-49.162

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.77 Lead 2.36

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-50

 Date Analyzed:
 05/08/23
 Data File:
 305104-50.163

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.75 Lead 18.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-51

 Date Analyzed:
 05/08/23
 Data File:
 305104-51.164

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 9.79 Lead 4.83

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA43-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-52

 Date Analyzed:
 05/08/23
 Data File:
 305104-52.165

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 8.18 Lead 4.47

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-53

 Date Analyzed:
 05/08/23
 Data File:
 305104-53.166

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.40 Lead 4.44

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-54

 Date Analyzed:
 05/08/23
 Data File:
 305104-54.167

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 21.2 Lead 12.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-55

 Date Analyzed:
 05/08/23
 Data File:
 305104-55.168

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 9.77 Lead 15.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA46-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.17 Lead 3.35

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-57

 Date Analyzed:
 05/08/23
 Data File:
 305104-57.170

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 13.7 Lead 7.47

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-58

 Date Analyzed:
 05/08/23
 Data File:
 305104-58.171

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.22 Lead 4.36

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA49-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-59

 Date Analyzed:
 05/08/23
 Data File:
 305104-59.174

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Analyte: mg/kg (ppm

Arsenic 15.3 Lead 35.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-60

 Date Analyzed:
 05/08/23
 Data File:
 305104-60.175

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 4.16 Lead 4.17

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA51-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-61

 Date Analyzed:
 05/08/23
 Data File:
 305104-61.176

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 11.6 Lead 15.1

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-62

 Date Analyzed:
 05/08/23
 Data File:
 305104-62.179

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 8.85 Lead 9.75

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA53-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-63

 Date Analyzed:
 05/08/23
 Data File:
 305104-63.180

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 16.2 Lead 36.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA53-1 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-64

 Date Analyzed:
 05/08/23
 Data File:
 305104-64.181

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 16.5 Lead 38.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-65

 Date Analyzed:
 05/08/23
 Data File:
 305104-65.182

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic 9.43 Lead 11.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA55-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-66

 Date Analyzed:
 05/08/23
 Data File:
 305104-66.183

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 8.53 Lead 4.79

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-67

 Date Analyzed:
 05/09/23
 Data File:
 305104-67.217

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.44 Lead 2.56

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-68

 Date Analyzed:
 05/09/23
 Data File:
 305104-68.221

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.16 Lead 2.41

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA57-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-69

 Date Analyzed:
 05/09/23
 Data File:
 305104-69.224

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 10.0

Analyte:

Lead 11.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-70

 Date Analyzed:
 05/09/23
 Data File:
 305104-70.225

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.77 Lead 4.97

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA58-1 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-71

 Date Analyzed:
 05/09/23
 Data File:
 305104-71.226

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.22 Lead 2.84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-72

 Date Analyzed:
 05/09/23
 Data File:
 305104-72.233

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 6.24 Lead 3.48

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-73

 Date Analyzed:
 05/09/23
 Data File:
 305104-73.234

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic <1 Lead 1.77

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-74

 Date Analyzed:
 05/09/23
 Data File:
 305104-74.235

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.73 Lead 3.50

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-75

 Date Analyzed:
 05/09/23
 Data File:
 305104-75.236

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

 $\begin{array}{cc} \text{Arsenic} & 2.50 \\ \text{Lead} & 4.50 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-76

 Date Analyzed:
 05/09/23
 Data File:
 305104-76.237

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 5.67 Lead 9.32

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA63-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-77

 Date Analyzed:
 05/09/23
 Data File:
 305104-77.238

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.42 Lead 3.74

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-78

 Date Analyzed:
 05/09/23
 Data File:
 305104-78.239

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.10 Lead 10.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA65-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-79

 Date Analyzed:
 05/09/23
 Data File:
 305104-79.246

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic 10.6 Lead 12.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA66-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-80

 Date Analyzed:
 05/09/23
 Data File:
 305104-80.247

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 14.9 Lead 21.3

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-81

 Date Analyzed:
 05/09/23
 Data File:
 305104-81.248

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 7.95 Lead 25.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 $\begin{array}{ccccc} \text{Client ID:} & \text{HA68-0.5} & \text{Client:} & \text{The Riley Group} \\ \text{Date Received:} & 05/05/23 & \text{Project:} & \text{McAllister } 2022\text{-}004\text{-}3 \end{array}$

 Date Extracted:
 05/08/23
 Lab ID:
 305104-82

 Date Analyzed:
 05/09/23
 Data File:
 305104-82.251

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 9.86 Lead 13.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-83

 Date Analyzed:
 05/09/23
 Data File:
 305104-83.252

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 10.1 Lead 21.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-84

 Date Analyzed:
 05/09/23
 Data File:
 305104-84.258

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 4.40 Lead 3.03

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA71-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-85

 Date Analyzed:
 05/09/23
 Data File:
 305104-85.259

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 3.10 Lead 5.27

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-86

 Date Analyzed:
 05/09/23
 Data File:
 305104-86.260

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

 $\begin{array}{cc} \text{Arsenic} & 2.25 \\ \text{Lead} & 2.72 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-87

 Date Analyzed:
 05/09/23
 Data File:
 305104-87.261

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 4.90 Lead 6.71

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA73-0.5 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-88

 Date Analyzed:
 05/09/23
 Data File:
 305104-88.262

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.12 Lead 2.72

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-89

 Date Analyzed:
 05/09/23
 Data File:
 305104-89.263

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.22 Lead 3.16

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: HA74-1 Client: The Riley Group
Date Received: 05/05/23 Project: McAllister 2022-004-3

 Date Extracted:
 05/08/23
 Lab ID:
 305104-90

 Date Analyzed:
 05/09/23
 Data File:
 305104-90.264

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.05 Lead 2.66

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-91

 Date Analyzed:
 05/09/23
 Data File:
 305104-91.265

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 3.03 Lead 3.73

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-92

 Date Analyzed:
 05/09/23
 Data File:
 305104-92.268

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.82 Lead 3.46

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-93

 Date Analyzed:
 05/09/23
 Data File:
 305104-93.269

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 3.44 Lead 8.71

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

 Date Extracted:
 05/08/23
 Lab ID:
 305104-94

 Date Analyzed:
 05/09/23
 Data File:
 305104-94.270

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Arsenic 2.63 Lead 3.09

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group
Date Received: Not Applicable Project: McAllister 2022-004-3

Date Extracted: 05/08/23 Lab ID: I3-358 mb
Date Analyzed: 05/08/23 Data File: I3-358 mb.045
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group
Date Received: Not Applicable Project: McAllister 2022-004-3

Date Extracted: 05/08/23 Lab ID: I3-359 mb
Date Analyzed: 05/08/23 Data File: I3-359 mb.047
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group
Date Received: Not Applicable Project: McAllister 2022-004-3

Date Extracted: 05/08/23 Lab ID: I3-360 mb
Date Analyzed: 05/08/23 Data File: I3-360 mb.095
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group
Date Received: Not Applicable Project: McAllister 2022-004-3

Date Extracted: 05/08/23 Lab ID: I3-361 mb
Date Analyzed: 05/08/23 Data File: I3-361 mb.097
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: The Riley Group
Date Received: Not Applicable Project: McAllister 2022-004-3

Date Extracted: 05/08/23 Lab ID: I3-362 mb
Date Analyzed: 05/09/23 Data File: I3-362 mb.215
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

ENVIRONMENTAL CHEMISTS

Date of Report: 05/11/23 Date Received: 05/05/23

Project: McAllister 2022-004-3, F&BI 305104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 305104-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	5.11	104 b	94 b	75-125	10 b
Lead	mg/kg (ppm)	50	10.8	107 b	101 b	75 - 125	6 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	97	80-120
Lead	mg/kg (ppm)	50	99	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/11/23 Date Received: 05/05/23

Project: McAllister 2022-004-3, F&BI 305104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 305104-21 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	6.22	116 b	124 b	75-125	7 b
Lead	mg/kg (ppm)	50	11.3	96 b	99 b	75 - 125	3 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	95	80-120
Lead	mg/kg (ppm)	50	97	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/11/23 Date Received: 05/05/23

Project: McAllister 2022-004-3, F&BI 305104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 305104-41 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	7.66	102 b	99 b	75-125	3 b
Lead	mg/kg (ppm)	50	13.8	87 b	90 b	75 - 125	3 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	96	80-120
Lead	mg/kg (ppm)	50	105	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/11/23 Date Received: 05/05/23

Project: McAllister 2022-004-3, F&BI 305104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 305104-61 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	9.39	111 b	120 b	75-125	8 b
Lead	mg/kg (ppm)	50	12.2	89 b	90 b	75 - 125	1 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	94	80-120
Lead	mg/kg (ppm)	50	103	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/11/23 Date Received: 05/05/23

Project: McAllister 2022-004-3, F&BI 305104

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 305104-81 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	6.04	84 b	88 b	75-125	5 b
Lead	mg/kg (ppm)	50	19.2	81 b	83 b	75 - 125	$2 \mathrm{\ b}$

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	90	80-120
Lead	mg/kg (ppm)	50	101	80-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

30510 En 305104
Report To 101+ PUSSE 1823

SAMPLE CHAIN OF CUSTODY

05-05-23

えて

City, State, ZIP Postive 11, WA 95011 Address 17522 BOHNALL WOW WE Company The Pilly FINILY

Phone 425-415-055/ Email + MASS-CILO Mily Group Compecting RLs? - Yes / No SAMPLERS (signature) REMARKS PROJECT NAME Mc Pillister E-400-2202 INVOICE TO PO#

> SAMPLE DISPOSAL
>
> Archive samples XStandard turnaround Rush charges authorized by: TURNAROUND TIME Page#_

Default: Dispose after 30 days

HAIO-ON	5'0 - bth	HAS LON	144 - O.S	HA6-0.5	NO-54H	HD4-02 V	HA3-0.5	HA3-CIS	HA1-0.5	Sample ID	
10	09	08	67	06	Š	04	03	02	0	Lab ID	
0940	0935	06.90	0900	09 20	0920	Cals	0110	caps	0900	Date Sampled	
1	`								5/3/23	Time Sampled	
Ĺ									801	Sample Type	
_	معدون.			-						# of Jars	
										NWTPH-Dx NWTPH-Gx BTEX EPA 8021	
										NWTPH-HCID	A.
							<u> </u>			VOCs EPA 8260 PAHs EPA 8270	VALY:
										PCBs EPA 8082	ANALYSES REQUESTED
										PB	EQUE
	\times	×	4	×	<u>ヤ</u>	>	X	7	×	lead and Argenic	STED
Sea											
Samples received at 140										Notes	

Friedman & Bruya, Inc.

Relinquished by

SIGNATURE

PRINT NAME

COMPANY

DATE

TIME

280

1047

Received by:

Received by:

Relinquished by:

Merber-Boy

BEZ

5/5/23

NS

Ph. (206) 285-8282

305/04
Report To tait Russell Company Ren Phone_ City, State, ZIP_ Address_ SAMPLE CHAIN OF CUSTODY

Ų.	SAMPLE CHAIN OF CUSTODY	DY 05-05-23	W
	SAMPLERS (signature)		
	much		
	PROJECT NAME	PO#	
	Mc Muster	stop trof	
	REMARKS	INVOICE TO	
	Project specific RLs? - Yes / No		

SAMPLE DISPOSAL

Archive samples

Default: Dispose after 30 days

0ther_

Rush charges authorized by: ★Standard turnaround
 □ RUSH

Page # O of C

of C

72

HA18-0.5	TIA17 -1	HA17-0,5	HAIG I CIV	TATARES HAIS-FO	HAIY -1	HA14-015	HA13-05	HIR12-0.5	HALL-OS	Sample ID			
20	19	18	17	اله	15	Ιď	13	اك	=	Lab ID			
6									5/3/23	Date Sampled			
1030	1025	1020	1015	1010	1005	0001	0955	0950	5460	Time Sampled			
6									50:7	Sample Type			
4								-	1-	# of Jars			
										NWTPH-Dx			
		ļ 		<u> </u>			 	 		NWTPH-Gx			
			 					-		BTEX EPA 8021 NWTPH-HCID			
<u> </u>		ļ			<u> </u>	-		ļ		VOCs EPA 8260	AN,		
						<u> </u>				PAHs EPA 8270			
										PCBs EPA 8082			
X	\times	×	7	X	×	X	×	X	×	Lead and Arsenic	EQU		
^											ANALYSES REQUESTED		
			 				-				ED		
			 				-	1					
										Notes			

Ph. (. Fried

edman & Bruya, Inc. Reli (206) 285-8282 Reci Reli	A18-0.5	A17 -1	417-0,5	416 10,5	THERE HAIS-FO	A14 -1	S10-11	113-05	+12-0.5	11-0.5
Received by: Received by: Received by: Relinquished by: Received by:	20	Ьı	18	ın	الح	15	īq	13	12	=
SIGNATURE SIGNATURE	4									5/2/23
) j	1030	1025	1020	1015	010	5007	0001	0955	0950	5410
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	€									50:7
PRINT NAME	4									1
PRINT NAME THE PRINT NAME TH										
COMPANY	×	×	X ,	7	人 ,	×	×	\times	X	×
M M M D										
ATE										
TIME 930 1047										

HAM-ON HA19-1. Address_ Ph. (206) 285-8282 Friedman & Bruya, Inc. HA 25-05 I HA20 - 0.5 Phone City, State, ZIP Company_ 50- he th S.O-CEUH HAZI -I HA21-0.5 MASS EN 1170 Sample ID ROI Email Relinquished by: Received by: Received by: Relinguished by 2 Lab ID 25 30 27 22 26 23 28 3 24 SIGNATURE 5/3/23 Sampled Date 000 SAMPLE CHAIN OF CUSTODY 1055 Sampled 1035 5401 oho) SAMPLERS (signature)

PROJECT NAME 110 TOS 1080 ES 1120 Time REMARKS Project specific RLs? - Yes / No Mc Allister Sample 201 Type Jars # of PRINT NAME NWTPH-Dx NWTPH-Gx BTEX EPA 8021 3022 -004-3 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 05-05-23 PAHs EPA 8270 COMPANY × SAMPLE DISPOSAL

Archive samples Standard turnaround Rush charges authorized by: □ RUSH_ Default: Dispose after 30 days Page # 3 TURNAROUND TIME DATE Notes g, 130 5 TIME my

Phone_ City, State, ZIP Company ZEN Report To Tout Prissell Address_ SAMPLE CHAIN OF CUSTODY

		700
	SAMPLERS (signature)	
1	Must	
	PROJECT NAME	PO#
1	McHilister	8-1200-2001
	REMARKS	INVOICE TO
-		
I	Project specific RLs? - Yes / No	

Default: Dispose after 30 days

Other_

SAMPLE DISPOSAL

Archive samples

Rush charges authorized by: XStandard turnaround
☐ RUSH_____

Page#

TURNAROUND TIME

	HA 33-0, 5	HA 32-0.5	HA31-1	HA31-0.5	HA30 -015	HA39-FD	HA08-1	NO-86AH	TART -0:5	HA26 -0.5	Sample ID	
2	40	39	38	37	32	35	34	జ	32	<u>ω</u>	Lab ID	
CICAY ATTEN	4									5/3/23	Date Sampled	
	12:10	1205	1200	11 52	1150	24.11	110	11.35	1136	1125	Time Sampled	
										1,08	Sample Type	
							-				# of Jars	
7											NWTPH-Dx	
											NWTPH-Gx	
				ļ							BTEX EPA 8021	
											NWTPH-HCID	A
											VOCs EPA 8260	NAI
											PAHs EPA 8270	YSE
											PCBs EPA 8082	SRE
	X	X	\times	X_	><	Х-	\times	×	٧_	><	Pb+As	QUI
												ANALYSES REQUESTED
							i					D
											Notes	

Friedm Ph. (20

	——————————————————————————————————————		nan & Bruya, Inc. 1 06) 985-8989 -		33-0,5	32-0.5	31-1	51 - GIS	30 -015	9-70	98-1	50-86	S:0- FE	16-0.5	Sample ID
Received by:	Relinquished by:	Received by:	Joy.	SIC	40	39	38	37	32	35	34	ß	32	<u>\(\omega \) \(\</u>	Lab ID
	I'M Call		1	SIGNATURE	4									5/3/23	Sampled
	Ž				12:10	1205	1200	11 52	1150	1145	01-10	1135	1136	1125	Sampled
	Liz		2											1108	Туре
	Liz JWB	2 M	£1	PRINT NAME					-						Jars
	0 %	Jul	A	NA.					ļ			<u> </u>			NWTPI
		36	1/1	ME			<u> </u>		<u> </u>	-			<u> </u>	ļ	NWTPI
													ļ <u>.</u>		BTEX EP. NWTPH-
															VOCs EPA
				H											PAHs EPA
-	Ú ;	\lesssim	7												PCBs EPA
1	ŠÉ	X	1/2	MOC	X	火.	×	X	×	X.	×	×	1/2	×	Pb+ As
		, ,	H	COMPANY											,
				Y											
													-		
	5/5/23	2/2	1/2	DATE											Z
	1157	400	930	TIME											Notes

Phone_ TA 38-0.5 HA 37 -0.5 Ph. (206) 285-8282 Friedman & Bruya, Inc. TAYOL HA 39-FD TA35 Company REN HA 40 -015 TH 36-F HR34-015 Report To Taxt PUSSEL HA 35 1 City, State, ZIP Address TIP 41-05 Sample ID Ū Email Received by: Relinquished by: Received by: Relinquished by: 근 Lab ID 49 42 80 り **8** h 46 노 43 ৰ্দ্ SIGNATURE 5/5/5 Sampled Date SAMPLE CHAIN OF CUSTODY 1215 1250 Sh. 21 0000 1255 Sampled 1220 1240 1235 1225 1230 PROJECT NAME SAMPLERS (signature) REMARKS Project specific RLs? - Yes / No AC ATTES <u>マ</u> Sample Type Liz Jars # of PRINT NAME NWTPH-Dx NWTPH-Gx BTEX EPA 8021 2022-004-3 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 05-05-23 PAHs EPA 8270 PCBs EPA 8082 COMPANY Pb+ A5 ☐ Archive samples Standard turnaround □ Other_ Rush charges authorized by: Default: Dispose after 30 days Page # 5 TURNAROUND TIME SAMPLE DISPOSAL 515/23 DATE Notes 123 280 TIME 0 25

305104			SAMPLE CHAIN OF CUSTODY	CHAIN	OF o	cus	TO	DY		7	205	8	-23	5	5	hw
Report To TOUT PUSSELI) E '		SAMPLI	SAMPLERS (signature)	ture)									Page # KO TURNAROUNI	of 1	
Company D.S			PROJEC	PROJECT NAME						뫼	PO#	.)	Standard turnaround	d	
			MORNISTER	Ster					9	22	2012 -004-13	7	Ü	Rush charges authorized by:	ed by:	
City, State, ZIP			REMARKS	KS					N	VOI	INVOICE TO	70		SAMPLE DISPOSAL Archive samples)SAL	
PhoneEmail			Project s	Project specific RLs? -	s? - Yes	1	/ No							Default: Dispose after 30 days	r 30 d	ays
									A	NAL	ANALYSES		QUE	REQUESTED		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	Pbr As	N.	Notes	
HAHA-O.S	51	5/3/23	1308	777									\times			
. 1 .	53		1315										\times			
NA44 - 0.5	54		1320										入			
MA45-015	\$5		1325		-								と			
HA46-05	56		1330										乂 -			
HAHT -OS	57		13851		_							ļ	メ			
NO-814H	88		1340										人			-
MA49-0.5	£759		1345										<u>ヤ</u>			
MA 50-0.5	60	4	1350	E	_							ļ.,	入			
Friedman & Bruya, Inc. Reli Ph. (206) 285-8282	Jby	SIGNATURE				PRINT NAME						2		COMPANY DATE	TIME	<i>a</i>
	Received by:	5			2	2	2000	3		<u> </u>		V	X	57	bc	7
Reli	Relinquished by:	M CH	À	L'Y		lesbu-E	4	8	7	<u> </u>		77	77 P	5 5/5/23	115/	
Rece	Received b#	•	<u></u>	,				$^{\circ}$								

ゴ ロ HA SOL H1751-0,5 HASH -TO HA53-Ph. (206) 285-8282 Friedman & Bruya, Inc. HASS - 0,5 TH53.0.0 HASZ -0.5 HASS-00 MA 56-05 City, State, ZIP Address Company_ Report To__ 5:0- 45 Sample ID KC1 Email Received by: Relinquished by: Relinquished by: 0 64 Lab ID 62 65 66 69 70 83 67 SIGNATURE 5/3/23 Sampled Date 141230800 Se 30 Q5 30 CS 25 0%20 1180 810 50.85 1088 1801 SAMPLE CHAIN OF CUSTODY SK 40 Sampled Time SAMPLERS (signature) PROJECT NAME REMARKS Project specific RLs? - Yes / No MCAUISTER 500 Sample Type is Well ber Driver 6 Jars PRINT NAME NWTPH-Dx NWTPH-Gx BTEX EPA 8021 2022-004-3 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PAHs EPA 8270 25-05-23 PCBs EPA 8082 COMPANY Pb+AS X Standard turnaround ☐ Archive samples Rush charges authorized by: Default: Dispose after 30 days Page# 7 TURNAROUND TIME SAMPLE DISPOSAL DATE of O MY Notes 115/ 98 TIME \cdot\

TIA 61-Ph. FriMAG1 -0.5 HA53-1 MA 62 -0.5 HAS9-05 Report To_ M 6305 HALDIOX-FD City, State, ZIP Address_ Company___ TAG L & S Sample ID out Russili Email 73 アイ Lab ID 79 75 72 78 SH123 0845 Sampled 0910 SAMPLE CHAIN OF CUSTODY 5180 0900 0855 0920 0905 0550 0925 Sampled SAMPLERS (signature) Time PROJECT NAME 2017 Sample Type

Project specific RLs? · Yes / No REMARKS Mr. Maiser NWTPH-Dx NWTPH-Gx BTEX EPA 8021 2022-004-3 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 X Standard turnaround \square Other_ ☐ Archive samples Rush charges authorized by: Default: Dispose after 30 days SAMPLE DISPOSAL

PO#

05-05-23

Page #

TURNAROUND TIME

Jars

PHYAS

Notes

H

		" (200) 200-0202	riedman & Bruya, Inc. h (906) 985-8989		14 60 O.V
Received by:	Relinquished by: Sheeth	Received by:	Relinquished by:	SIGNATURE	80 0930
	Lie Muser-Bra	Us Tilma (Jan X	PRINT NAME	<
	Fish	XX	HUN	COMPANY	<u>×</u>
	2/5	2	5/5	DATE	
	115	1047	Sh	TIME	

Address Company__ Report To VAIT RUSSEL RGI SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)

Phone_

Email

Project specific RLs? - Yes / No

City, State, ZIP

REMARKS PROJECT NAME McAllicher 2022-004-3 INVOICE TO PO# 05-05-23 Page#

XStandard turnaround

TURNAROUND TIME

□ RUSH_

Rush charges authorized by:

 \square Other

Default: Dispose after 30 days

☐ Archive samples

SAMPLE DISPOSAL

HA74-05 88			ha72 cs 87	HA71-1 86	MA71-05 85	HA70-C, 1 84	HA69-0.5 83	HAGS-0.5 82	8/	Sample ID Lab ID	
.,									4/4/23	Date Sampled	
	1015	010	1005	000	0955	0950	0945	0940	0935	Time Sampled	
									SOHL	Sample Type	
<								-	1	# of Jars	
										NWTPH-Dx	
			<u> </u>	<u> </u>						NWTPH-Gx	
				ļ		<u> </u>			ļ	BTEX EPA 8021	
			ļ	ļ						NWTPH-HCID	B
\dashv			ļ	-		ļ				VOCs EPA 8260	NA AN
			-	ļ				ļ		PAHs EPA 8270	YSE.
			ļ		ļ					PCBs EPA 8082	S Z
<	大	7	X	又	\geq	X	X	X -	×	Ph+As	ANALYSES REQUESTED
				<u> </u>							THIS
			ļ								
\dashv											
										Notes	

Ph. (206) 285-8282 Friedman & Bruya, Inc.

Received by:

Relinquished.

ただ

8/5/2

দ

Received by:

Relinquished by:

SIGNATURE

PRINT NAME

COMPANY

DATE

TIME

083

Relinquished I Received by:	Friedman & Bruya, Inc. Relinquished Ph. (206) 285-8282 Received by:			<u></u>		HA7-7-1	SO-LLVH	HA76-05	HA75-05	Sample ID		Phone Email	City, State, ZIP		Company RG1	Report To TAIT RUSSELL	401506
Relinquished by:	Relinquished by: Received by:	SIC				94	යි	92	9	Lab ID							
W. College	7	SIGNATURE /				<			4/4/23	Date Sampled						٠	
B						1040	1035	1030	1025	Time Sampled		Project s	REMARKS	Z Z	PROJE	SAMPL	SAMPLE CHAIN OF CUSTODY
Lie						<			ڪمار	Sample Type		Project specific RLs? -	KS	McMich	PROJECT NAME	SAMFLERS (signature)	CHAIN
Zu T	Z 21	PRIN				<		_	7	# of Jars		s? - Yes		7		ture)	OF
Mes bu-B		PRINT NAME								NWTPH-Dx		<u> </u>				W	cus
	2	AME								NWTPH-Gx		N _o					
1										BTEX EPA 8021				• •			¥₽
	'									NWTPH-HCID	A		Ę	202	(1	ϕ
										VOCs EPA 8260	ÁLY		INVOICE TO	2022-004-3	PO#	\mathcal{X}	X
	_ \									PAHs EPA 8270	SES		E T	5	#	1	
Rich		CON				×	人	入	7	PCBs EPA 8082 Pb+A5	ANALYSES REQUESTED			Ŵ			S
	XX	COMPANY						_			JES'I						Ρδ
		₹ }			 						Œ	Defa		Rush	Standa RUSH		25-23
												ult:	SAN Archive	char	andar JSH	TURN	₅ W
5/5	7,4	ם ט										Dispo	SAMPLE DI Archive samples	ges a	d tur	NAR	±
23 7	4/0/	DATE									$ \ $	se at	SAMPLE DISPOSAL hive samples	Rush charges authorized by:	SKStandard turnaround □ RUSH	TURNAROUND TIME	3
-										Notes		ter E	POSA	ized	ınd	O TIN	,
15	136 136 136 136 136 136 136 136 136 136	TIME								9,		Default: Dispose after 30 days	Ĺ	by:		Æ	\tilde{b}
	10				·			<u> </u>			Ш	ß '					3