Table of Contents

Part I. W	hat are the Landscape Conditions in the Upper Deschutes Subwatershed? 1
Part II.	Characterize Condition of Ecological Processes in Study Area
Part III.	Natural Resource Restoration Site Ranking
Part IV.	Identify and Assess Potential Sites Within the Context of the Landscape
	List of Tables
Table 2.0	Upper Deschutes Ecological Processes Function
Table 2.1	Weight criteria to rank DAUs
Table 2.2	Convert Ecological Process Score to Ecological Benefit Rank
Table 2.3	Final DAU Ecological Benefit Rank
Table 2.4	Convert Wetland Environmental Process Score to Benefit Rank
Table 2.5	Convert Riparian Environmental Process Score to Benefit Rank
Table 2.6	Convert Floodplain Environmental Process Score to Benefit Rank
Table 2.7	Upper Deschutes Environmental Benefit Ranking of Natural Resource Sites 11
Table 2.8	Combined Ranking Score
Table 2.9	Wetland Sites
Table 2.10	Riparian Sites
	Table of Figures
Figure 2.0	Classification Percent Totals for Upper Deschutes Subwatershed
Figure 2.1	Upper Deschutes Subwatershed Land Cover
Figure 2.2	Upper Deschutes Subwatershed Ecological Function
Figure 2.3	Upper Deschutes Subwatershed Ecological Processes and Site Ranking – Wetlands
Figure 2.4	Upper Deschutes Subwatershed Ecological Processes and Site Ranking - Riparian

Introduction

This section summarizes the methods used to develop the final list of natural resource (wetlands, riparian, and floodplain) restoration and/or enhancement sites. The final stage of the watershed characterization analysis combines the ecological benefits of each DAU and the environmental benefits of each natural resource site to develop a list of natural resource sites that will provide the greatest functional "lift" in the subwatershed.

Part I. What are the Landscape Conditions in the Upper Deschutes Subwatershed?

Current conditions

Current land-use within the Upper Deschutes watershed was determined by processing Aerial photography and SPOT 10 meter satellite imagery captured in 2009. The results are presented in Figures 2.0 and 2.1 and indicate that approximately one percent of the Upper Deschutes Subwatershed is covered by the built environment. The primary land-use in the Upper Deschutes consists of long-term commercial forestry activities.

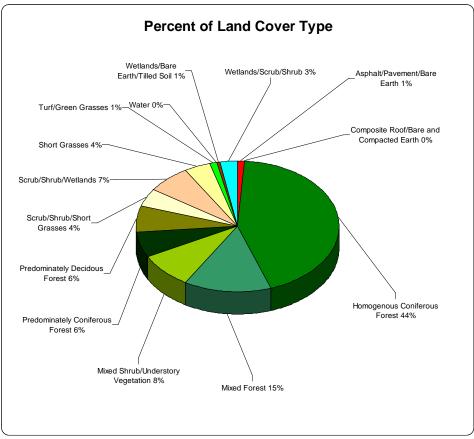


Figure 2.0 Classification Percent Totals for Upper Deschutes Subwatershed Land cover data from 2009 SPOT imagery.

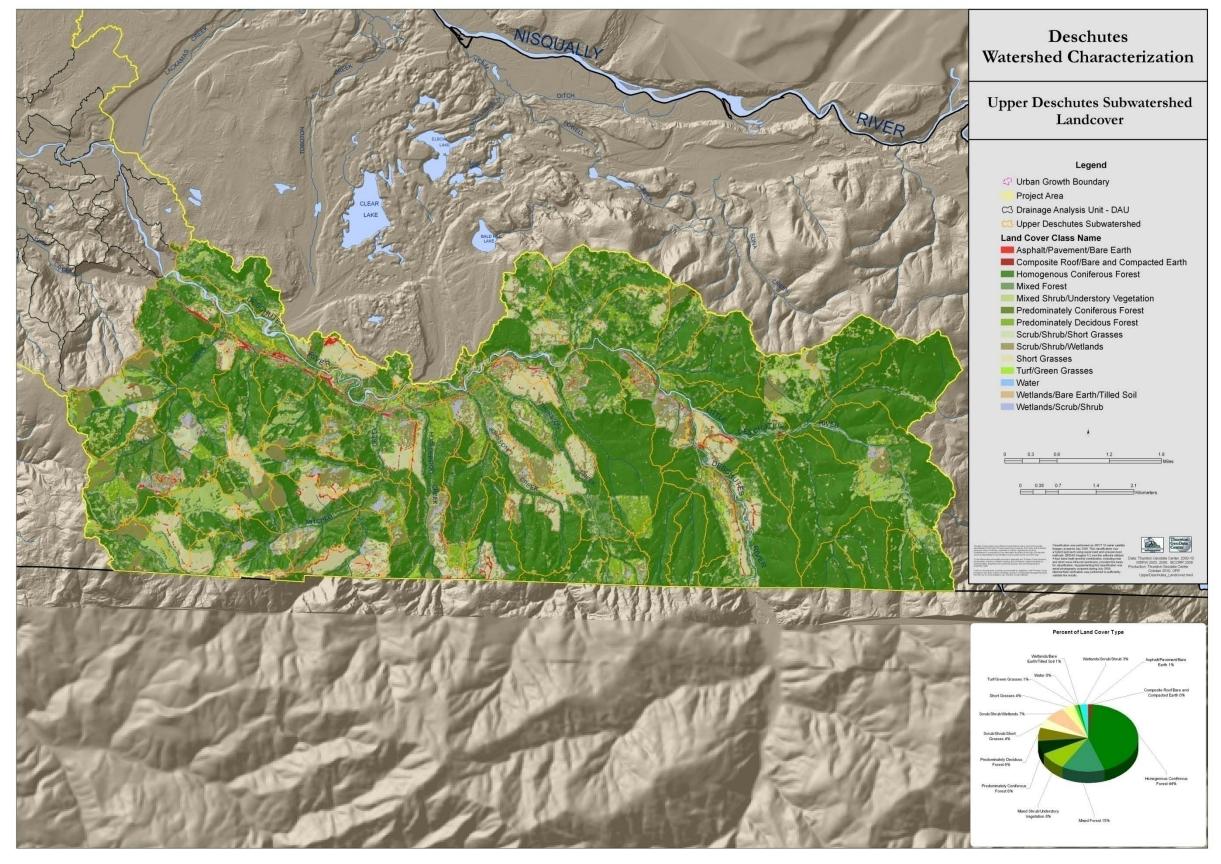


Figure 2.1 Upper Deschutes Subwatershed Land Cover

Deschutes Watershed Characterization Page 2

Part II. Characterize Condition of Ecological Processes and Biological Elements in the Study Area

Five ecological processes and two biological elements were assessed. The five ecological processes include the delivery and movement of water, sediment, wood, pollutants, and heat. The biological elements include aquatic integrity and habitat connectivity. The Matrix of Pathways and Indicators (MPI) was used to determine the function of each ecological process and biological indicator at the DAU scale. Following the assessment of each individual ecological process and biological element, Rules and Assumptions (Tables 8-14 in the Methods document) were used to rank each DAU as Properly Functioning (PF), At Risk (AR), or Not Properly Functioning (NPF). For complete details of the values used in the MPI, please consult Table 7 in the Methods document. For complete details of the Rules and Assumptions, please consult Tables 8 through 14 in the Methods document. Appendix A of this document contains the Methods document.

There are 51 DAUs totaling 19,416 acres (30 sq miles) in the Upper Deschutes subwatershed.

Human alteration to the movement of water

The Upper Deschutes subwatershed was characterized using the following landscape attributes:

- Percent TIA
- Percent forest land
- Percent wetlands cover

Human alteration to the natural movement of sediment

The Upper Deschutes subwatershed was characterized using the following landscape attributes:

- Percent bare soils
- Road density
- Percent unstable slopes

•

Human alteration to the natural movement of large wood

The Upper Deschutes subwatershed was characterized using the following landscape attributes:

- Percent forested riparian
- Number of stream crossings per kilometer of stream

Human alteration to the natural movement of pollutants

The Upper Deschutes subwatershed was characterized using the following landscape attributes:

- Extent of 303(d) listed water bodies for nutrients, toxicants, bacteria, and temperature
- Condition and extent of wetlands

Human alteration to the natural movement of heat

The Upper Deschutes subwatershed was characterized using the following landscape attributes:

- Extent of 303(d) listed water bodies for nutrients, toxicants, bacteria, and temperature
- Percent 67 meter riparian zone with mature canopy
- Road density
- Percent TIA

Aquatic integrity

The Upper Deschutes subwatershed was characterized using the following landscape attributes:

- Percent riparian forest
- Percent TIA
- B-IBI scores

Habitat Connectivity

FRAGSTATS was utilized to determine habitat connectivity for forest and prairie landscapes. FRAGSTATS is a computer software program designed to compute a wide variety of landscape metrics for categorical map patterns. The original software (version 2) was released in the public domain during 1995 in association with the publication of a USDA Forest Service General Technical Report (McGarigal and Marks 1995). For more information, go to http://www.umass.edu/landeco/research/fragstats/fragstats.html

Determine the Ecological Benefit of the DAU

The final ranking of each DAU yields a baseline condition of ecological health for each DAU and sub-watershed after the assessment of individual ecological process and biological element using the indicators above and the application of the rules and assumptions in the Methods documents All DAUs within the study area with ecological processes considered "At Risk (AR)" under current land use conditions are identified for further consideration. DAUs in the AR category for multiple key ecological processes are assumed to provide the greatest potential to maximize environmental benefits when natural resource sites are restored.

Table 2.0 includes each ecological process and biological element with the resulting function level of PF, AR, or NPF. Subsequently, an aggregation of these processes and elements are used to provide an overall function level and ranking of the DAU.

Table 2.0 Upper Deschutes Ecological Processes and Biological Elements Function

DAU Id	Acres	Sq Mi	Aquatic Integrity	Habitat Connectivity	Water	Sediment	Wood	Pollutants	Heat
225	336	0.52	N/A	PF	AR	PF	PF	N/A	PF
226	450	0.70	N/A	PF	PF	PF	PF	N/A	PF
227	531	0.83	N/A	AR	PF	PF	PF	N/A	PF
228	539	0.84	N/A	AR	PF	PF	AR	N/A	AR
229	503	0.79	N/A	AR	PF	PF	AR	N/A	AR

DAU Id	Acres	Sq Mi	Aquatic Integrity	Habitat Connectivity	Water	Sediment	Wood	Pollutants	Heat
230	384	0.60	N/A	PF	PF	AR	PF	N/A	PF
231	292	0.46	N/A	PF	PF	PF	PF	N/A	PF
232	470	0.74	N/A	AR	PF	PF	PF	N/A	PF
233	256	0.40	N/A	NPF	PF	AR	AR	N/A	AR
234	325	0.51	N/A	PF	PF	PF	PF	N/A	PF
235	875	1.37	N/A	PF	PF	PF	PF	N/A	PF
236	429	0.67	N/A	PF	PF	PF	PF	N/A	PF
237	400	0.63	N/A	AR	PF	PF	AR	N/A	AR
238	247	0.39	N/A	PF	PF	PF	PF	N/A	PF
239	794	1.24	N/A	AR	AR	PF	AR	N/A	AR
240	537	0.84	N/A	AR	PF	AR	AR	N/A	AR
241	559	0.87	N/A	PF	AR	PF	PF	N/A	PF
242	403	0.63	N/A	AR	AR	AR	AR	PF	AR
243	387	0.60	N/A	AR	PF	PF	AR	N/A	AR
244	459	0.72	N/A	AR	PF	AR	AR	N/A	AR
245	740	1.16	N/A	AR	PF	AR	AR	N/A	AR
246	376	0.59	N/A	AR	AR	PF	AR	N/A	AR
247	217	0.34	N/A	AR	AR	PF	AR	N/A	AR
248	366	0.57	N/A	AR	PF	PF	AR	N/A	AR
249	832	1.30	N/A	PF	PF	PF	PF	N/A	PF
250	457	0.71	N/A	PF	PF	PF	PF	N/A	PF
251	534	0.83	N/A	AR	PF	AR	AR	N/A	AR
252	321	0.50	N/A	PF	PF	PF	PF	N/A	PF
253	566	0.88	N/A	AR	PF	PF	AR	N/A	AR
254	588	0.92	N/A	PF	PF	PF	PF	N/A	PF
255	296	0.46	N/A	AR	AR	AR	AR	N/A	AR
256	222	0.35	N/A	PF	AR	PF	PF	N/A	PF
257	177	0.28	N/A	AR	PF	AR	AR	N/A	AR
258	670	1.05	N/A	AR	AR	PF	AR	N/A	AR
259	328	0.51	N/A	AR	PF	AR	AR	N/A	AR
260	239	0.37	N/A	PF	PF	PF	PF	N/A	PF
261	218	0.34	N/A	PF	PF	PF	PF	N/A	PF
262	442	0.69	N/A	AR	AR	AR	AR	N/A	AR
263	247	0.39	N/A	AR	AR	AR	AR	N/A	AR
264	225	0.35	N/A	PF	PF	PF	PF	N/A	PF
265	320	0.50	N/A	AR	AR	AR	NPF	N/A	AR
266	143	0.22	N/A	PF	PF	PF	PF	N/A	PF
267	153	0.24	N/A	PF	PF	PF	PF	N/A	PF
268	238	0.37	N/A	PF	PF	PF	PF	N/A	PF
269	170	0.27	N/A	PF	PF	PF	PF	N/A	PF
270	204	0.32	N/A	AR	PF	AR	AR	N/A	AR
271	174	0.27	N/A	PF	PF	PF	PF	N/A	PF
272	167	0.26	N/A	AR	AR	PF	AR	N/A	AR
273	161	0.25	N/A	PF	PF	PF	PF	N/A	PF
274	206	0.32	N/A	AR	AR	PF	NPF	N/A	AR
275	243	0.38	N/A	AR	PF	PF	AR	N/A	AR

Using the function condition assigned to the DAU in which a potential mitigation site occurs, identify which ecological processes and biological elements are considered "At Risk". Identify a single ecological process or biological element that is the local recovery priority.

In the Deschutes River watershed, riparian and large woody debris were identified as a priority for the watershed (Anchor, 2009).

All DAUs are assigned an ecological benefit score. This score is then used to develop an ecological benefit rank using technical team best professional judgment. The movement of water is scored the highest based on the importance of that ecological process in a built landscape. The ecological processes and biological elements are ranked based on the criteria in Table 2.1:

Table 2.1 Weight criteria to rank DAUs

Ecological Process/Biological Element in "At Risk" Condition	Score Weight	Total Score
Movement of Water	1 X 3	3
Local Theme – Movement of Large Wood	1 X 2	2
Movement of Pollutants	1 X 1	1
Movement of Heat	1 X 1	1
Movement of Sediment	1 X 1	1
Aquatic Integrity	1 X 1	1
Upland Habitat Connectivity	1 X 1	1
Maximum score for a DAU when all processes are "At Risk"		10

Once the DAU ecological processes and biological elements function levels are determined, the function levels are translated to a ranking scheme. Ecological processes and biological elements which have been identified as "At Risk" are scored higher based upon the potential for enhancement from restored/rehabilitated marginal function levels. The ecological process scores are then ranked according to the weight criteria, and converted to a High, Moderate, or Low process rank, as detailed in Table 2.2.

Table 2.2 Convert Ecological Process Score to Ecological Benefit Rank

Ecological Process and Biological Element Score	Ecological Benefit Rank
7, 8, 9, 10 points	High
3, 4, 5, or 6 points	Moderate
0, 1, or 2 points	Low

Using the overall point total, the DAU's are then ranked High, Moderate, or Low. Table 2.3 details the final ecological benefit rank of each DAU.

Table 2.3 Final DAU Ecological and Biological Benefit Rank

			cologic				ological ements		
DAU Id		Sediment		Pollutants	Heat	Aquatic Integrity	Habitat	Total Score	Rank
242	3	1	2	0	1	0	1	8	High
255	3	1	2	0	1	0	1	8	High
262	3	1	2	0	1	0	1	8	High
263	3	1	2	0	1	0	1	8	High
239	3	0	2	0	1	0	1	7	High
246	3	0	2	0	1	0	1	7	High
247	3	0	2	0	1	0	1	7	High
258	3	0	2	0	1	0	1	7	High
272	3	0	2	0	1	0	1	7	High
265	3	1	0	0	1	0	1	6	Moderate
240	0	1	2	0	1	0	1	5	Moderate
244	0	1	2	0	1	0	1	5	Moderate
245	0	1	2	0	1	0	1	5	Moderate
251	0	1	2	0	1	0	1	5	Moderate
257	0	1	2	0	1	0	1	5	Moderate
259	0	1	2	0	1	0	1	5	Moderate
270	0	1	2	0	1	0	1	5	Moderate
274	3	0	0	0	1	0	1	5	Moderate
228	0	0	2	0	1	0	1	4	Moderate
229	0	0	2	0	1	0	1	4	Moderate
233	0	1	2	0	1	0	0	4	Moderate
237	0	0	2	0	1	0	1	4	Moderate
243	0	0	2	0	1	0	1	4	Moderate
248	0	0	2	0	1	0	1	4	Moderate
253	0	0	2	0	1	0	1	4	Moderate
275	0	0	2	0	1	0	1	4	Moderate
225	3	0	0	0	0	0	0	3	Moderate
241	3	0	0	0	0	0	0	3	Moderate
256	3	0	0	0	0	0	0	3	Moderate
227	0	0	0	0	0	0	1	1	Low
230	0	1	0	0	0	0	0	1	Low
232	0	0	0	0	0	0	1	1	Low
226	0	0	0	0	0	0	0	0	Low
231	0	0	0	0	0	0	0	0	Low
234	0	0	0	0	0	0	0	0	Low
235	0	0	0	0	0	0	0	0	Low
236	0	0	0	0	0	0	0	0	Low
238	0	0	0	0	0	0	0	0	Low

			cologic rocess			ological ements			
DAU Id	Water	Sediment	Wood	Pollutants	Heat	Aquatic Integrity	Habitat	Total Score	Rank
249	0	0	0	0	0	0	0	0	Low
250	0	0	0	0	0	0	0	0	Low
252	0	0	0	0	0	0	0	0	Low
254	0	0	0	0	0	0	0	0	Low
260	0	0	0	0	0	0	0	0	Low
261	0	0	0	0	0	0	0	0	Low
264	0	0	0	0	0	0	0	0	Low
266	0	0	0	0	0	0	0	0	Low
267	0	0	0	0	0	0	0	0	Low
268	0	0	0	0	0	0	0	0	Low
269	0	0	0	0	0	0	0	0	Low
271	0	0	0	0	0	0	0	0	Low
273	0	0	0	0	0	0	0	0	Low

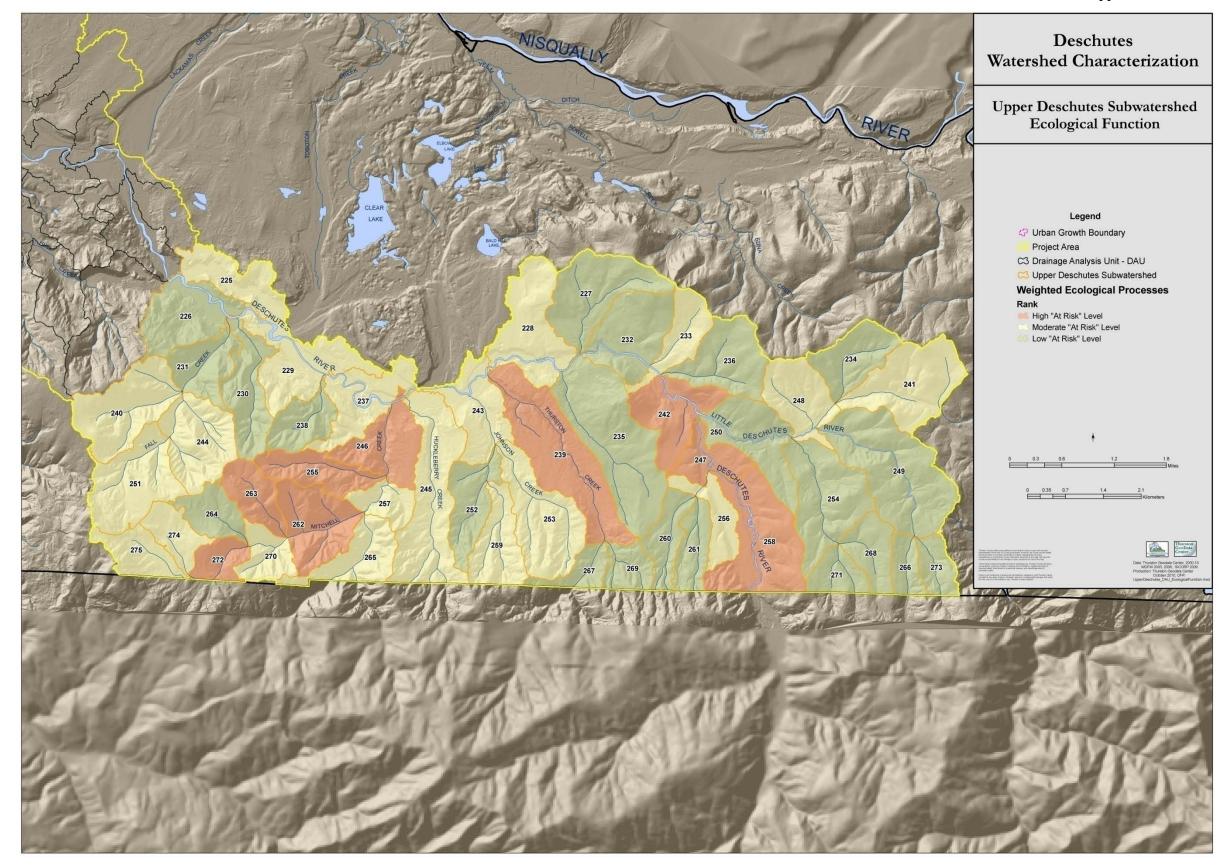


Figure 2.2 Upper Deschutes Subwatershed Ecological Function

Deschutes Watershed Characterization

Part III. Natural Resource Restoration Site Ranking

This section evaluates natural resource sites within the study area. The site acreage may contain multiple parcels, or just one. The watershed characterization methods do not assess at the parcel or jurisdictional boundary. The methods focus on the landscape only. The purpose is to determine natural resource sites that can be restored or enhanced in the surrounding landscape that will provide the greatest functional lift. The analysis is conducted concurrently with the analyses of the ecological processes and biological elements. Upon completion of the DAU analysis and the natural resource site analysis, the sites identified are ranked in the context of the DAU and subwatershed landscape scale.

Determine the Environmental Benefit of the Resource Sites

The natural resource sites are evaluated based on the attributes assigned during site assessment using Tables 22 to 24 in the Methods document to assign an environmental benefit final score. Once all the attributes have been evaluated, the following ranking criteria are used to rank the sites High, Moderate, and Low, as detailed in Tables 2.4 to 2.6.

NOTE: The three point classes for the environmental process score were developed using natural break points in the data range specific tor the Deschutes Watershed.

Table 2.4 Convert Wetland Environmental Process Score to Benefit Rank

Environmental Process Score	Environmental Benefit Rank
7 to 12 points	High
4 to 6 points	Moderate
0 to 3 points	Low

Table 2.5 Convert Riparian Environmental Process Score to Benefit Rank

Environmental Process Score	Environmental Benefit Rank
6 to 10 points	High
3 to 5 points	Moderate
0 to 2 points	Low

Table 2.6 Convert Floodplain Environmental Process Score to Benefit Rank

Environmental Process Score	Environmental Benefit Rank
9 to 10 points	High
7 to 8 points	Moderate
6 points	Low

Following the conversion of natural resource sites from a score to Low, Moderate, or High rank, there were a total of 315 potential restoration or enhancement sites. Table 2.7 details the results.

Table 2.7 Upper Deschutes Environmental Benefit Ranking of Natural Resource Sites

Upper Deschutes						
Potential Restoration Sites						
Rank	Wetland	Riparian	Floodplain	Total		
High	45	40	0	85		
Medium	70	34	0	104		
Low	74	52	0	126		

Part IV. Assess Potential Sites within the DAU

This section presents the results of a ranking process for all potential natural resource restoration sites within the DAU. This ranking of a natural resource restoration site is based on a combination of each site individual site's rank and combined with the ranking of the DAU within which the restoration site is located. The result of this combination is a final score from 0 to 6, with a score of 6 representing those sites with the greatest potential for environmental benefit if restored. Table 2.8 is used to score the natural resource sites in the context of the DAU.

Table 2.8 Combined Ranking Score

Ecological Benefit	Environmental Benefit	Total Score
(DAU)	(Resource Site)	
High	High	6
High	Moderate	5
Moderate	High	4
Moderate	Moderate	3
Low	High	2
Low	Moderate	1
N/A	Low	0

Thus, the Ecological Benefit (DAU) and the Environmental Benefit (Resource Sites) are ranked to provide a final score from 0 to 6. Following evaluation, a total of 189 sites were ranked within the corresponding DAU.

Results of natural resource restoration site ranking for wetlands, riparian and floodplain (where present) areas are described in the following sections.

Wetlands

Table 2.9 presents the results of wetland restoration site ranking taking into account the combined wetland restoration potential and the DAU ranking. Figure 2.3 shows the location of

each wetland restoration site. Wetland sites ranked Low and less than one acre are not included in the table, but are ranked and available upon request.

Table 2.9 Wetland Sites

Site ID	Wetlands Rank	Combined DAU Site Score	Acres
Wetland 2668	High	6	4.00
Wetland 2676	High	6	1.24
Wetland 2682	High	6	2.63
Wetland 2750	High	6	3.20
Wetland 2705	High	6	2.67
Wetland 2706	High	6	18.10
Wetland 2837	High	6	2.32
Wetland 2691	Moderate	5	2.89
Wetland 2719	Moderate	5	2.94
Wetland 2840	Moderate	5	3.66
Wetland 2627	High	4	1.54
Wetland 2629	High	4	2.60
Wetland 2662	High	4	4.88
Wetland 2540	High	4	3.05
Wetland 2613	High	4	10.05
Wetland 2633	High	4	1.19
Wetland 2673	High	4	4.19
Wetland 2677	High	4	1.72
Wetland 2714	High	4	1.51
Wetland 2715	High	4	2.01
Wetland 2741	High	4	5.91
Wetland 2748	High	4	1.79
Wetland 2752	High	4	1.50
Wetland 2619	High	4	1.16
Wetland 2628	High	4	2.19
Wetland 2641	High	4	1.69
Wetland 2701	High	4	2.03
Wetland 2744	High	4	1.16
Wetland 2745	High	4	2.10
Wetland 2650	Moderate	3	1.96
Wetland 2658	Moderate	3	1.24
Wetland 2690	Moderate	3	5.66
Wetland 2838	Moderate	3	3.09
Wetland 2647	Moderate	3	3.84
Wetland 2685	Moderate	3	2.73
Wetland 2692	Moderate	3	2.00
Wetland 2720	Moderate	3	2.99
Wetland 2584	Moderate	3	2.18
Wetland 2607	Moderate	3	1.51
Wetland 2612	Moderate	3	8.61
Wetland 2623	Moderate	3	9.02

Site ID	Wetlands Rank	Combined DAU Site Score	Acres
Wetland 2639	Moderate	3	3.55
Wetland 2646	Moderate	3	2.48
Wetland 2651	Moderate	3	1.35
Wetland 2654	Moderate	3	2.51
Wetland 2681	Moderate	3	1.80
Wetland 2688	Moderate	3	9.36
Wetland 2696	Moderate	3	3.55
Wetland 2702	Moderate	3	2.54
Wetland 2743	Moderate	3	3.83
Wetland 2759	Moderate	3	1.95
Wetland 2601	High	2	6.99
Wetland 2749	Moderate	1	3.19
Wetland 2575	Moderate	1	2.49
Wetland 2576	Moderate	1	4.89
Wetland 2583	Moderate	1	4.65
Wetland 2593	Moderate	1	8.89
Wetland 2594	Moderate	1	5.11
Wetland 2603	Moderate	1	7.43
Wetland 2608	Moderate	1	2.92

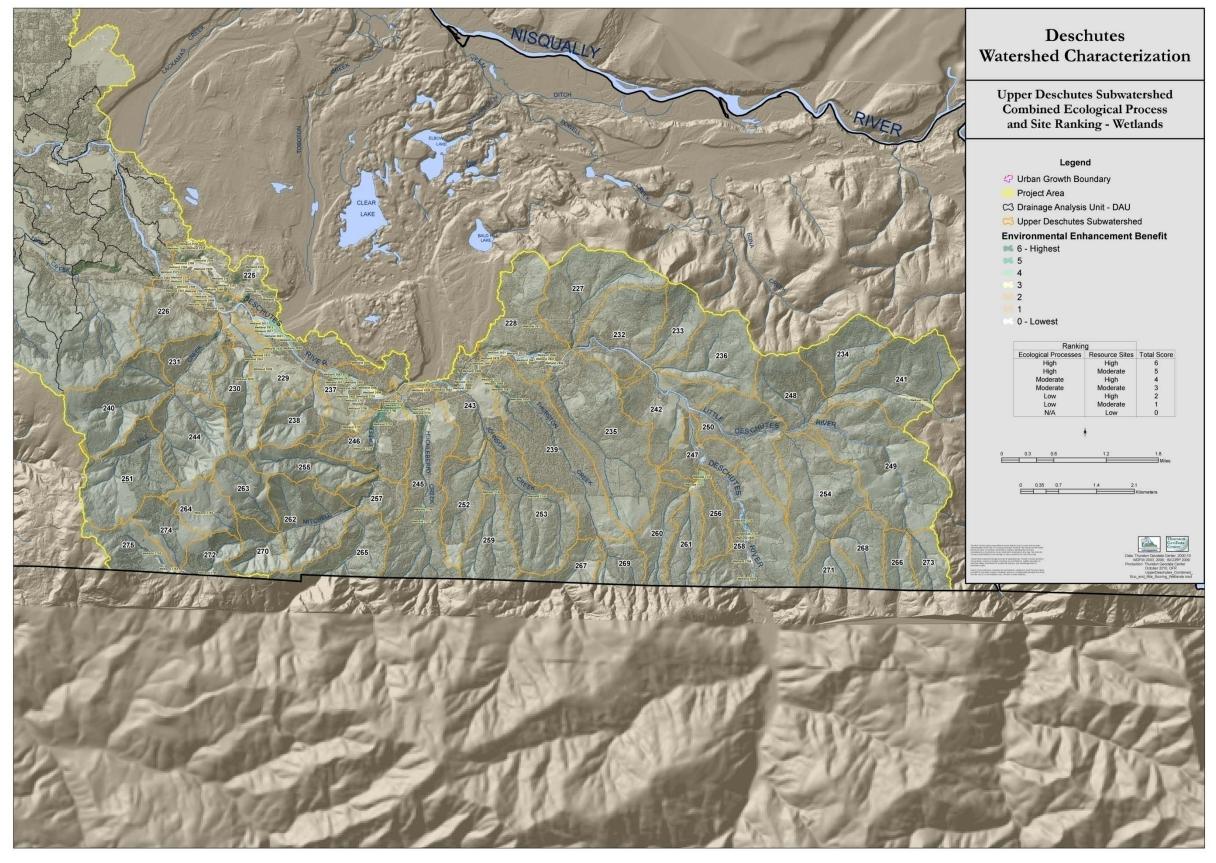


Figure 2.3 Upper Deschutes Subwatershed Ecological Processes and Site Ranking – Wetlands

Deschutes Watershed Characterization Page 14

Riparian condition

The resulting combined score of the natural resource site within the context of the DAU were scored and displayed on Figure 3.4 Upper Deschutes Subwatershed Ecological Processes and Site Ranking – Riparian.

Table 2.10 Riparian Sites

Site ID	Riparian Rank	Combined DAU and Site Score	Acres
Riparian 1502	High	6	247.65
Riparian 2651	High	6	59.76
Riparian 3152	High	6	27.34
Riparian 1773	High	6	58.10
Riparian 1794	High	6	564.27
Riparian 1795	High	6	36.09
Riparian 1946	High	6	126.52
Riparian 2196	High	6	93.07
Riparian 2204	High	6	84.39
Riparian 3451	High	6	111.33
Riparian 1818	High	6	18.00
Riparian 1527	Moderate	5	12.83
Riparian 1713	Moderate	5	269.21
Riparian 1842	Moderate	5	17.28
Riparian 2079	Moderate	5	34.71
Riparian 2287	Moderate	5	162.47
Riparian 2488	Moderate	5	32.53
Riparian 2630	Moderate	5	31.37
Riparian 2112	Moderate	5	10.14
Riparian 2266	Moderate	5	26.76
Riparian 2376	Moderate	5	16.33
Riparian 2042	Moderate	5	5.78
Riparian 2971	Moderate	5	59.08
Riparian 3074	Moderate	5	23.05
Riparian 1646	High	4	98.60
Riparian 2812	High	4	235.61
Riparian 1105	High	4	1.11
Riparian 1505	High	4	85.80
Riparian 1617	High	4	20.19
Riparian 1762	High	4	166.02
Riparian 1838	High	4	286.30
Riparian 2171	High	4	482.44
Riparian 3403	High	4	271.15
Riparian 3445	High	4	7.55
Riparian 3446	High	4	14.45
Riparian 3447	High	4	8.01
Riparian 1201	High	4	1.13
Riparian 1639	High	4	9.30

Site ID	Riparian Rank	Combined DAU and Site Score	Acres
Riparian 1658	High	4	295.78
Riparian 1835	High	4	26.66
Riparian 1866	High	4	396.29
Riparian 1990	High	4	149.08
Riparian 2473	High	4	39.87
Riparian 3452	High	4	300.28
Riparian 1141	Moderate	3	46.34
Riparian 1281	Moderate	3	10.74
Riparian 1291	Moderate	3	14.30
Riparian 1399	Moderate	3	35.24
Riparian 1821	Moderate	3	23.10
Riparian 1860	Moderate	3	28.12
Riparian 1904	Moderate	3	109.04
Riparian 2467	Moderate	3	73.54
Riparian 2695	Moderate	3	64.16
Riparian 3396	Moderate	3	10.51
Riparian 2925	Moderate	3	37.05
Riparian 1075	Moderate	3	11.48
Riparian 1251	Moderate	3	18.24
Riparian 1261	High	2	46.30
Riparian 1679	High	2	45.01
Riparian 1711	High	2	18.11
Riparian 2847	High	2	151.42
Riparian 1223	High	2	6.40
Riparian 1276	High	2	306.73
Riparian 1337	High	2	243.44
Riparian 1362	High	2	69.47
Riparian 1940	High	2	45.22
Riparian 1332	Moderate	1	44.83
Riparian 1491	Moderate	1	162.68
Riparian 1922	Moderate	1	498.78
Riparian 1969	Moderate	1	11.78
Riparian 2187	Moderate	1	98.40
Riparian 3444	Moderate	1	14.94
Riparian 3469	Moderate	1	34.25
Riparian 893	Moderate	1	391.66

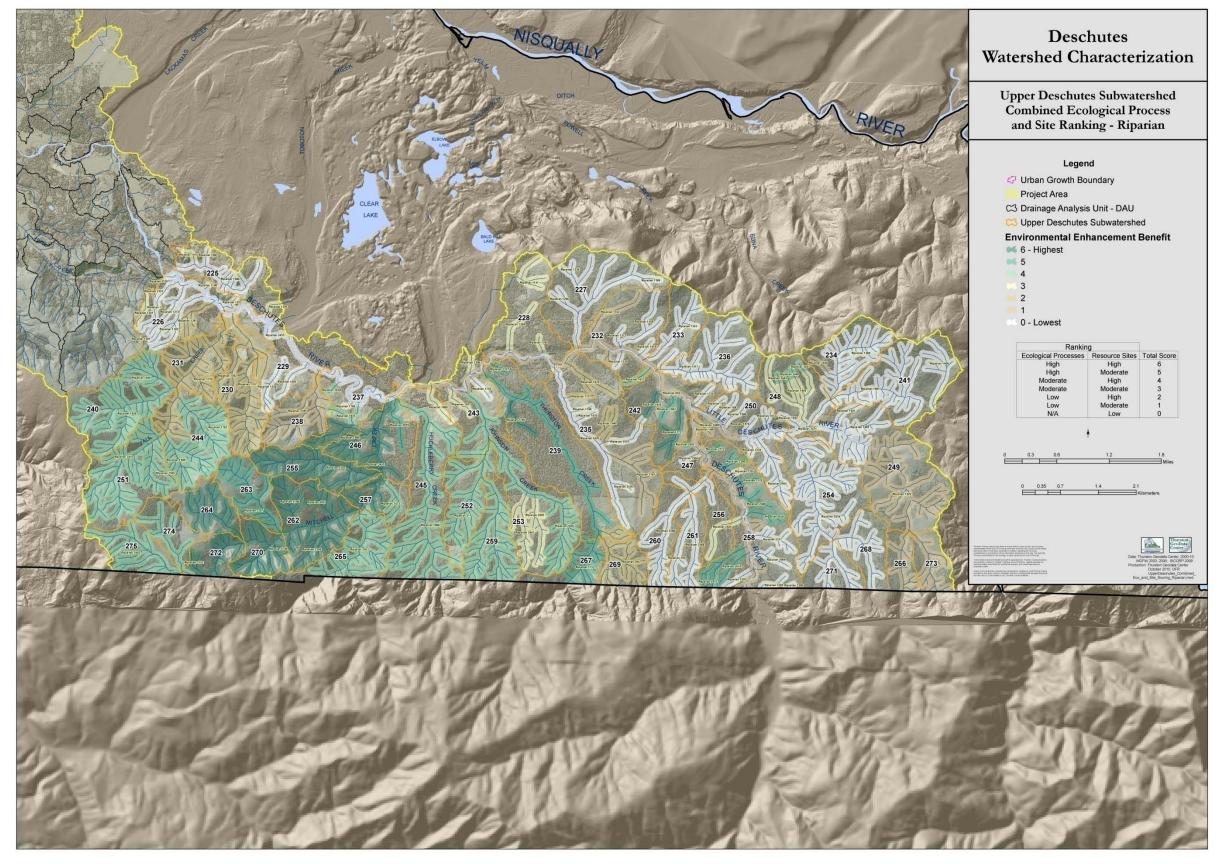


Figure 2.4 Upper Deschutes Subwatershed Ecological Processes and Site Ranking - Riparian

Deschutes Watershed Characterization Page 17

Floodplain Condition

There is no regulated floodplain in the Upper Deschutes Subwatershed.