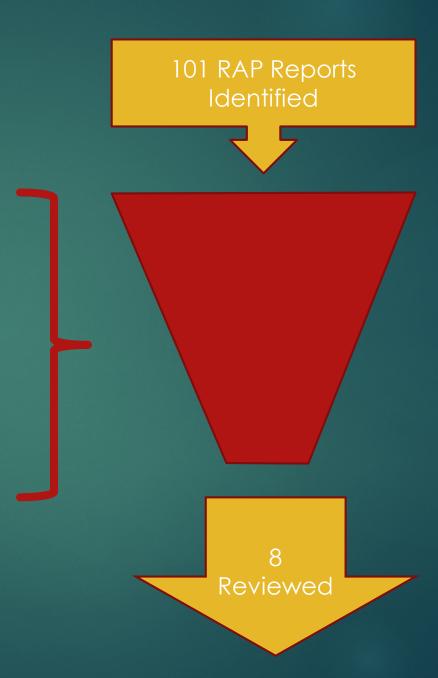
Contaminant Leaching from Recycled Asphalt Pavement

FINDINGS FROM THE LITERATURE REVIEW

JUNE 20, 2019

Review Framework

Objective: Summarize research on direct testing of contaminant leaching from Recycled Asphalt Pavement (RAP)


What the literature review specifically did not address:

- Did not consider source control or site BMPs
- Did not look at fate and transport
- Was not specific to Nisqually Area

Screening Process

- Age (old studies used less rigorous laboratory techniques/equipment)
- First party/original work
- 100% RAP
- Refereed literature/scientific journal

Report Organization

- Summary of findings from each of 8 studies
 - Described results by batch and/or column studies (or field studies in one case)
 - Studies evaluated metals, organics (PAHs) or both
 - Studies key conclusions
- Comparison of Results to Standards
 - Comparison to Washington State Groundwater standards
 - Conclusions the authors had in relation to the standards they applied
- Comparison to Conditions at Nisqually
- Summary and Conclusions

Caveats

- Wide range of testing materials, testing protocols and study conditions
- ▶ While most of the studies were done in the U.S. some were done in Europe. European RAP represents different manufacturing processes and other differences (type of gas, vehicles, road maintenance)
- Concentrations of contaminants may not be applicable but general behavior was similar across studies

Our Findings

First...understanding detection limits

Below Detection ≠ Zero

- Detection Limits are defined by the method
- Method Detection Limits are not always attainable
- Methods have changed radically over the past 20 years

	State Standard				
Benzo(a)pyrene	0.008	<0.010- 0.020	BDL- 0.02	<0.071	<0.025-<0.025

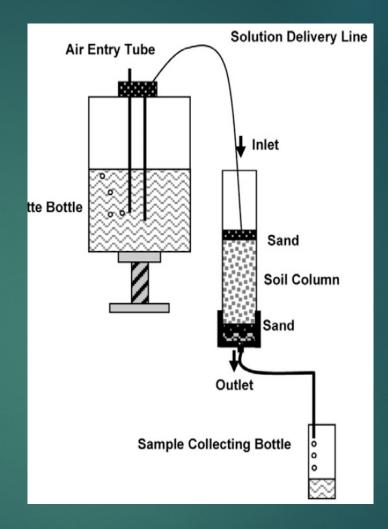
Batch Studies

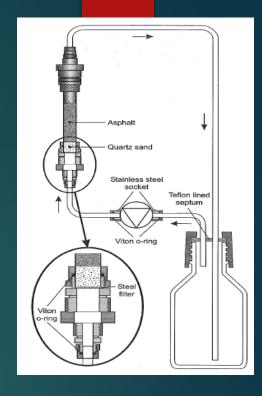
- 7 of the 8 studies performed batch type tests
- 6 studies included analysis of metals; 4 studies included analysis of PAHs
- pH, liquids to solid ratio, elutriate, duration of testing (hours to days) were the key testing variables

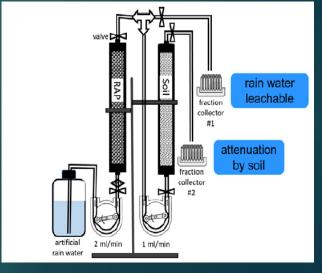
Figure 11: Laboratory Setup for Batch Extraction Experiments.

Batch Studies

- Some metals were detected above GW standards; higher concentrations were measured at low pH
- Only 50% of the studies used appropriate Detection Limits (DLs) for PAHs
- ▶ 13 of the 16 PAHs were detected in at least one of the studies
- ▶ 5 PAHs exceeded GW standards in 50% of the studies where DLs were appropriate

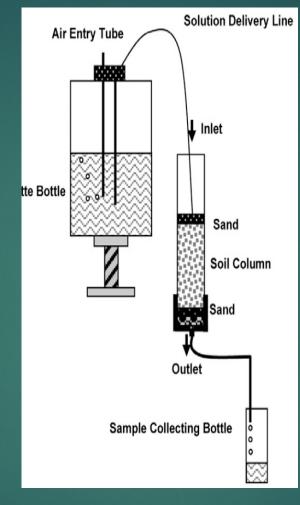


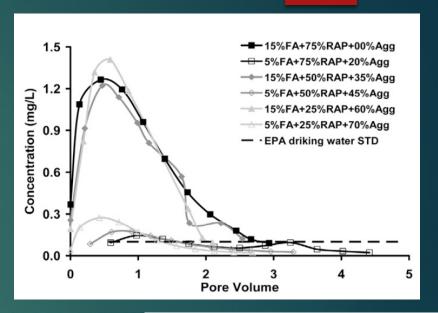

Figure 11: Laboratory Setup for Batch Extraction Experiments.

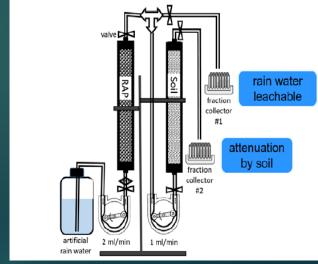


Column Studies

- 6 of the 8 reports included column studies
- 4 studies tested metals
- > 5 studies tested PAHs
- pH, L:S, duration (weeks to months), saturation, hydraulic loading rate,

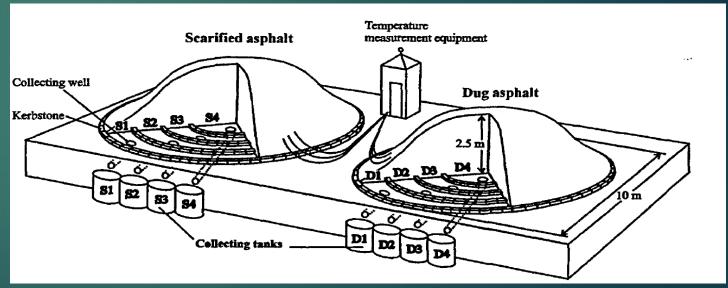


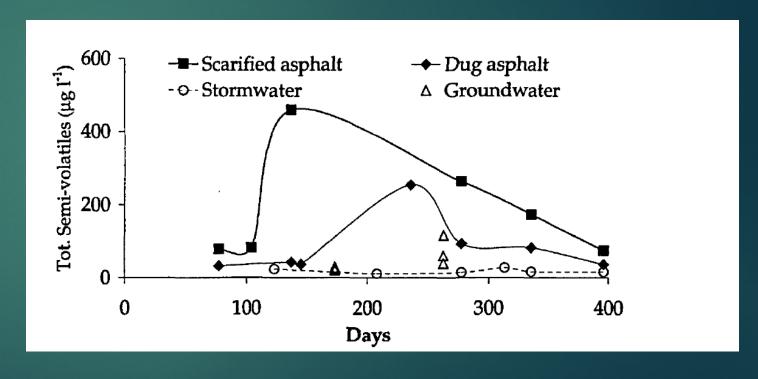




Column Studies

- Only 4 studies tested PAHs at appropriate DLs
- All 16 PAHs exceeded the GW standard in at least one study
- 8 were above standards in at least two (50%) of the studies
- Contaminants decreased to very low or BD levels after initial flushing




Field Study

- Only one field study
- Evaluated two RAP sources (from the wear course and base course of a highway)
- Examined differences in leachate content by location in the stockpile
- Only evaluated organics
- Compared results of their column testing to stockpile testing

Field Study

- Column studies had fewer organics and lower concentrations than stockpile leachate
- Column studies indicated much lower cumulative loading of organics (25%) than what was estimated for stockpiles
- > Key conclusion:
 - Column tests may be underestimating contaminant contributions and more field studies should be done.

Issues with the Field Study

Concern

- ► This study was done in Sweden where RAP may be very different from U.S.
- Study area in southern Sweden has very low pH (4.5) rainfall and represents an aggressive leaching environment

Response

- Concentrations of contaminants may not be representative of US RAP but the basic findings on leachate behavior likely apply
- While pH of precipitation in W. Washington is higher than in southern Sweden (5.3 vs 4.5) it is quite acidic and leaches contaminants.

Summary

Due to many variables with testing only broad summaries can be drawn from the research

- ▶ RAP is highly variable; manufacturing process, where it came from and how long it was in use, material size, storage and weathering.
- Although metals are leached they are rarely at concentrations that exceed GW standards, it is organic compounds (e.g.,PAHs) that are the bigger concern
- There were 4 PAHs consistently detected above GW standards in both batch and column studies
- Detections and exceedances of PAHs were associated with initial flushing; contaminants were often below detection after the initial flush
- ▶ A number of researchers suggested that the impact to the environment would be negligible if dilution and assimilation were considered.
- There was only one study of field conditions and it indicated that laboratory studies may not adequately account for real life conditions

Questions?

Are the Results Overly Biased by European Studies?

Author	U.S.	Europe
Aydilek	7	
Legret		1
Metha	3	
Birgisdottir		2
Norin		2
Kang	1	
Morse	3	
Brantley	6	
TOTAL RAP SAMPLES	20	5
TOTAL STUDIES	5	3

