To: Thurston County
From: Tyrell Bradley, PE, LDC Inc. Kyle Herrera, Design Engineer, LDC Inc.

Date: January 10, 2023
Project: C22-107 - Sienna II
TC Project \#: 2007101348
Subject: Sienna II - Stormwater Technical Memorandum

THURSTON COUNTY RECEIVED

MAY 24207.3
BUILDING DEVELOPMENT CENTER

Stormwater Verification

This technical memorandum was prepared for the Sienna II Plats located at $282477^{\text {th }}$ Way SW, Olympia WA 98512. The project disturbs approximately 32 acres and includes 130 single family lots, new roadways, new water and sewer systems, and new stormwater facilities. This technical memorandum serves to explain the drainage and storage capacity of the stormwater ponds for the 100-year storm event as they were constructed in the field.

An on-site field verification of the stormwater pond facilities was conducted on December 28, 2022, to determine as-built volumes and infiltration capacity. Per the geotechnical investigation performed by Quality Geo NW, PLLC on January 3-4, 2023, the basin infiltration rates for ponds F \& G were lower than the design rate. The basin infiltration rates for ponds A through E were significantly higher than the design. Table 1 below compares the design and field verified infiltration rates. See the geotechnical report attached for the field testing and assessment results.

BASIN	DESIGN INFILTRATION RATE (IN/HR)	VERIFIED INFILTRATION RATE (IN/HR)
ABCE	2	12.4
D	2	16.8
F	4	0.62
G	4	0.92

Ponds ABCE and D achieved higher infiltration rates than used in the design and therefore have an additional safety factor applied. Pond F was constructed with a bottom surface area of 814 SF , well above the minimum 492 SF required by the stormwater modeling. As a result, Pond F will fill to a depth of 3.5^{\prime} with 1.5^{\prime} of freeboard in the event of a 100 -year storm when using the field-verified infiltration rate of $0.62 \mathrm{in} / \mathrm{hr}$. Pond G was constructed as designed with a bottom area of 5210 SF and 10^{\prime} effective depth. Using the field-verified infiltration rate of $0.92 \mathrm{in} / \mathrm{hr}$, Pond G will fill to a depth of 4^{\prime} with 6^{\prime} of freeboard in the event of a 100-year storm. All pond facilities will infiltrate 100% of the stormwater generated on-site as constructed. Please find the WWHM2012 model reports attached for more information on Ponds F \& G as-built drainage capacities.

FIELD REPORT

Project Name: Sienna II Infiltration Verification	Report Date: $1 / 5 / 2023$
Site address: TPN $09090009000,-34000$; Tumwater, WA	QG Project Number: QG23-001
Client: LDC, Inc.	Field Date: $1 / 3 / 2023$ \& 1/4/2023
Consultation Performed: Infiltration Verification	Report \#: QG23-001 FR\#001

Report Status:	
Basin ABCE	PASS
Basin D	PASS
Basin G	FAIL
Basin F	FAIL

Report Remarks:

QG project geologist arrived on site as requested by the client for a verification of the infiltration conditions for four existing infiltration galleries. While on site, a QG Geotech performed an infield failing head infiltration test at each location. Plans were provided to QG at the time of exploration test.

QG evaluated existing conditions during our visit. Soils at Basin ABCE and Basin D resemble a brown sand with silt with mottling just below the surface. Soils at Basin F and Basin G resembled a dark brown sand with silt with higher fines content than the previous two locations. In general, soils were found to be in a medium dense and moist condition. Geotech could not test soil conditions in the center of the Basin G due to standing water and saturated conditions; tests were performed along the perimeter of this stormwater pond. All other ponds were tested within the center of the basins.

In-Field Infiltration Testing

The client requested in-field infiltration verification of 4 different infiltration basins within a presently developed site. QG completed in-field infiltration testing in accordance with the modified 1980 EPA Falling Head Test requirements, which is considered appropriate for shallow testing. Testing comprised the installation of 3 stovepipe test (SP) apparatus within relevant and representative soil locations at each site to evaluate the general shallow infiltration potential. Stove pipes were presoaked for one hour prior to commencing the test to adequately saturate sub soils.

Following the prescribed soak period, 3 stove pipe locations were filled with water at each site and allowed to drain over the course of up to an hour. During the test, cumulative head fall was measured at each site.

Corrected Ksat values presented below are a product of the initial Ksat and correction factor CFT. For a generalized site-wide design situation, we have applied a site variability factor of $\mathrm{CFv}=0.5$ along with typical values of $\mathrm{CFt}=0.4$ (for the falling head test) and $\mathrm{CFm}=0.9$ (assuming standard influent control). Referencing the Stormwater Management Manual for Western Washington and utilizing the following Total Correction Formula for a corrected rate:

$$
\mathrm{CF}_{\mathrm{T}}=\mathrm{CF}_{\mathrm{v}} \times \mathrm{CF}_{\mathrm{t}} \times \mathrm{CF}_{\mathrm{m}} 0.5 \times 0.4 \times 0.9=\underline{0.18}
$$

Table 1. A summary of the infiltration rates for each site is outlined in the table below:

Site	SP-1	SP-2	SP-3	Average Field Infiltration Rate	Corrected Field Infiltration Rate	Status
Basin ABCE	58.9	98.8	48.5	68.7	12.4	PASS
Basin D	124.4	4.5	93.3	93.3^{\dagger}	16.8	PASS
Basin F	4.75	2.5	3.0	3.42	0.62	FAIL
Basin G	NA* *	9.25	1.0	5.13	0.92	FAIL

*Failed during soak period
${ }^{\dagger}$ SP-3 is considered representative of average infiltration conditions
(All infiltration units are in inches/hour)

QG recommends the facility designer review these results and stated assumptions per reference literature to ensure applicability with the proposed development, level of anticipated controls, and long- term maintenance plan. The designer may make reasonable adjustments to correction factors and the resulting design values based on these criteria to ensure design and operational intent is met. We recommend that we be contacted if substantial changes to rate determination are considered.

Prepared by:

Alexander Barnes, G.I.T.
Staff Geologist, Laboratory Supervisor

Approved by:

Luke Preston McCann, L.E.G.
Principal Licensed Engineering Geologist

WWHM2012

PROJECT REPORT

General Model Information

Project Name: Sienna II Basin F
Site Name: Sienna Pond G
Site Address:
City:
Report Date: 1/10/2023
Gage: Olympia Airport
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: $\quad 15$ Minute
Precip Scale: 1.111
Version Date: 2021/08/18
Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data

Predeveloped Land Use

Basin 1	
Bypass:	No
GroundWater:	No
Pervious Land Use	acre
A B, Forest, Flat	0.43
Pervious Total	0.43
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.43

Element Flows To:
Surface Interflow Groundwater

Mitigated Land Use

Basin 1	
Bypass:	No
GroundWater:	No
Pervious Land Use	acre
Pervious Total	0
Impervious Land Use	acre
ROADS FLAT	0.34
POND	0.09
Impervious Total	0.43
Basin Total	0.43
Element Flows To:	
Surface	
Trapezoidal Pond 1	Interflow

Routing Elements

Mitigated Routing

Trapezoidal Pond 1

Bottom Length:
Bottom Width:
Depth:
Volume at riser head:
Infiltration On
Infiltration rate:
Infiltration safety factor:
Wetted surface area On
Total Volume Infiltrated (ac-ft.):
Total Volume Through Riser (ac-ft.):
Total Volume Through Facility (ac-ft.):
Percent Infiltrated:
Total Precip Applied to Facility:
Total Evap From Facility:
Side slope 1:
Side slope 2 :
Side slope 3:
Side slope 4:
Discharge Structure
Riser Height:
Riser Diameter:
Element Flows To:
Outlet 1
Outlet 2

3 To 1
3 To 1
3 To 1
3 To 1
3.5 ft .

18 in.
81.40 ft .
10.00 ft .

5 ft .
0.1543 acre-feet.
0.62

1

Pond Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
182.00	0.018	0.000	0.000	0.000
182.06	0.019	0.001	0.000	0.012
182.11	0.020	0.002	0.000	0.012
182.17	0.020	0.003	0.000	0.013
182.22	0.021	0.004	0.000	0.013
182.28	0.022	0.005	0.000	0.013
182.33	0.023	0.006	0.000	0.014
182.39	0.023	0.008	0.000	0.014
182.44	0.024	0.009	0.000	0.015
182.50	0.025	0.011	0.000	0.015
182.56	0.025	0.012	0.000	0.016
182.61	0.026	0.013	0.000	0.016
182.67	0.027	0.015	0.000	0.017
182.72	0.028	0.016	0.000	0.017
182.78	0.029	0.018	0.000	0.018
182.83	0.029	0.020	0.000	0.018
182.89	0.030	0.021	0.000	0.019
182.94	0.031	0.023	0.000	0.019
183.00	0.032	0.025	0.000	0.020
183.06	0.032	0.027	0.000	0.020
183.11	0.033	0.028	0.000	0.021
183.17	0.034	0.030	0.000	0.021
183.22	0.035	0.032	0.000	0.022
183.28	0.036	0.034	0.000	0.022
183.33	0.036	0.036	0.000	0.023
183.39	0.037	0.038	0.000	0.023

183.44	0.038	0.041	0.000	0.024
183.50	0.039	0.043	0.000	0.024
183.56	0.040	0.045	0.000	0.025
183.61	0.041	0.047	0.000	0.025
183.67	0.042	0.049	0.000	0.026
183.72	0.042	0.052	0.000	0.026
183.78	0.043	0.054	0.000	0.027
183.83	0.044	0.057	0.000	0.027
183.89	0.045	0.059	0.000	0.028
183.94	0.046	0.062	0.000	0.028
184.00	0.047	0.064	0.000	0.029
184.06	0.048	0.067	0.000	0.030
184.11	0.048	0.070	0.000	0.030
184.17	0.049	0.072	0.000	0.031
184.22	0.050	0.075	0.000	0.031
184.28	0.051	0.078	0.000	0.032
184.33	0.052	0.081	0.000	0.032
184.39	0.053	0.084	0.000	0.033
184.44	0.054	0.087	0.000	0.034
184.50	0.055	0.090	0.000	0.034
184.56	0.056	0.093	0.000	0.035
184.61	0.057	0.096	0.000	0.035
184.67	0.058	0.099	0.000	0.036
184.72	0.059	0.103	0.000	0.036
184.78	0.060	0.106	0.000	0.037
184.83	0.061	0.109	0.000	0.038
184.89	0.062	0.113	0.000	0.038
184.94	0.062	0.116	0.000	0.039
185.00	0.063	0.120	0.000	0.039
185.06	0.064	0.123	0.000	0.040
185.11	0.065	0.127	0.000	0.041
185.17	0.066	0.131	0.000	0.041
185.22	0.067	0.134	0.000	0.042
185.28	0.068	0.138	0.000	0.043
185.33	0.069	0.142	0.000	0.043
185.39	0.070	0.146	0.000	0.044
185.44	0.071	0.150	0.000	0.044
185.50	0.072	0.154	0.000	0.045
185.56	0.073	0.158	0.208	0.046
185.61	0.074	0.162	0.587	0.046
185.67	0.076	0.166	1.074	0.047
185.72	0.077	0.171	1.636	0.048
185.78	0.078	0.175	2.248	0.048
185.83	0.079	0.179	2.882	0.049
185.89	0.080	0.184	3.509	0.050
185.94	0.081	0.188	4.103	0.050
186.00	0.082	0.193	4.639	0.051
186.06	0.083	0.197	5.097	0.052
186.11	0.084	0.202	5.468	0.052
186.17	0.085	0.207	5.754	0.053
186.22	0.086	0.211	5.974	0.054
186.28	0.087	0.216	6.249	0.054
186.33	0.088	0.221	6.469	0.055
186.39	0.089	0.226	6.681	0.056
186.44	0.091	0.231	6.887	0.056
186.50	0.092	0.236	7.086	0.057
186.56	0.093	0.241	7.280	0.058
186.61	0.094		0.059	

186.67	0.095	0.252	7.654	0.059
186.72	0.096	0.257	7.834	0.060
186.78	0.097	0.263	8.010	0.061
186.83	0.098	0.268	8.183	0.061
186.89	0.100	0.274	8.351	0.062
186.94	0.101	0.279	8.517	0.063
187.00	0.102	0.285	8.679	0.064
187.06	0.103	0.291	8.838	0.064

Analysis Results

POC 1

Predeveloped Landuse Totals for POC \#1
Total Pervious Area: 0.43
Total Impervious Area: 0
Mitigated Landuse Totals for POC \#1
Total Pervious Area:
Total Impervious Area: 0.43
Flow Frequency Method: Log Pearson Type III 17B
Flow Frequency Return Periods for Predeveloped. POC \#1
Return Period
Flow(cfs)
2 year
0.002354

5 year
0.007283

10 year
25 year
50 year
0.013144
0.024672

100 year
0.037055

Flow Frequency Return Periods for Mitigated. POC \#1

Return Period
2 year
5 year
10 year
25 year
50 year
100 year
Annual Peaks
Annual Peaks for Predeveloped and Mitigated. POC \#1

Year	Predeveloped Mitigat	
1956	0.005	0.000
1957	0.002	0.000
1958	0.002	0.000
1959	0.002	0.000
1960	0.010	0.000
1961	0.009	0.000
1962	0.000	0.000
1963	0.013	0.000
1964	0.008	0.000
1965	0.008	0.000

1956
1957
1958
1959
1960
1962
1963
1964
1965

Flow(cfs)
0
0
0
0
0
0

1966	0.004	0.000
1967	0.003	0.000
1968	0.002	0.000
1969	0.000	0.000
1970	0.001	0.000
1971	0.003	0.000
1972	0.007	0.000
1973	0.000	0.000
1974	0.005	0.000
1975	0.003	0.000
1976	0.003	0.000
1977	0.000	0.000
1978	0.003	0.000
1979	0.001	0.000
1980	0.002	0.000
1981	0.003	0.000
1982	0.002	0.000
1983	0.001	0.000
1984	0.006	0.000
1985	0.000	0.000
1986	0.005	0.000
1987	0.029	0.000
1988	0.000	0.000
1989	0.000	0.000
1990	0.017	0.000
1991	0.014	0.130
1992	0.000	0.000
1993	0.001	0.000
1994	0.000	0.000
1995	0.002	0.000
1996	0.009	0.000
1997	0.009	0.000
1998	0.001	0.000
1999	0.010	0.000
2000	0.001	0.000
2001	0.000	0.000
2002	0.002	0.000
2003	0.000	0.000
2004	0.012	0.000
2005	0.000	0.000
2006	0.034	0.000
2007	0.011	0.176
2008	0.001	0.054

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC \#1

Rank	Predeveloped Mitigated	
1	0.0342	0.1764
2	0.0289	0.1296
3	0.0166	0.0540
4	0.0144	0.0000
5	0.0132	0.0000
6	0.0116	0.0000
7	0.0107	0.0000
8	0.0105	0.0000
9	0.0101	0.0000
10	0.0091	0.0000
11	0.0090	0.0000

12	0.0085	0.0000
13	0.0084	0.0000
14	0.0076	0.0000
15	0.0071	0.0000
16	0.0055	0.0000
17	0.0052	0.0000
18	0.0049	0.0000
19	0.0046	0.0000
20	0.0043	0.0000
21	0.0031	0.0000
22	0.0029	0.0000
23	0.0029	0.0000
24	0.0028	0.0000
25	0.0027	0.0000
26	0.0026	0.0000
27	0.0025	0.0000
28	0.0025	0.0000
29	0.0023	0.0000
30	0.0023	0.0000
31	0.0022	0.0000
32	0.0020	0.0000
33	0.0019	0.0000
34	0.0017	0.0000
35	0.0015	0.0000
36	0.0015	0.0000
37	0.0012	0.0000
38	0.0012	0.0000
39	0.0011	0.0000
40	0.0009	0.0000
41	0.0007	0.0000
42	0.0004	0.0000
43	0.0003	0.0000
44	0.0003	0.0000
45	0.0003	0.0000
46	0.0003	0.0000
47	0.0003	0.0000
48	0.0003	0.0000
49	0.0003	0.0000
50	0.0003	0.0000
51	0.0003	0.0000
52	0.0003	0.0000
53	0.0003	0.0000

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0012	263	104	39	Pass
0.0015	194	104	53	Pass
0.0019	149	103	69	Pass
0.0023	121	103	85	Pass
0.0026	98	102	104	Pass
0.0030	84	102	121	Fail
0.0034	75	101	134	Fail
0.0037	62	100	161	Fail
0.0041	54	100	185	Fail
0.0044	47	99	210	Fail
0.0048	42	99	235	Fail
0.0052	40	97	242	Fail
0.0055	33	96	290	Fail
0.0059	31	96	309	Fail
0.0063	28	94	335	Fail
0.0066	27	93	344	Fail
0.0070	27	92	340	Fail
0.0073	26	91	350	Fail
0.0077	24	91	379	Fail
0.0081	21	91	433	Fail
0.0084	21	90	428	Fail
0.0088	19	90	473	Fail
0.0091	16	90	562	Fail
0.0095	15	88	586	Fail
0.0099	15	88	586	Fail
0.0102	14	87	621	Fail
0.0106	13	86	661	Fail
0.0110	11	85	772	Fail
0.0113	11	85	772	Fail
0.0117	9	85	944	Fail
0.0120	7	84	1200	Fail
0.0124	7	83	1185	Fail
0.0128	7	82	1171	Fail
0.0131	7	82	1171	Fail
0.0135	6	81	1350	Fail
0.0139	6	81	1350	Fail
0.0142	6	81	1350	Fail
0.0146	5	80	1600	Fail
0.0149	5	80	1600	Fail
0.0153	5	80	1600	Fail
0.0157	5	80	1600	Fail
0.0160	4	78	1950	Fail
0.0164	4	76	1900	Fail
0.0168	3	76	2533	Fail
0.0171	3	75	2500	Fail
0.0175	3	74	2466	Fail
0.0178	3	74	2466	Fail
0.0182	3	73	2433	Fail
0.0186	3	73	2433	Fail
0.0189	3	73	2433	Fail
0.0193	3	71	2366	Fail
0.0197	3	70	2333	Fail
0.0200	3	69	2300	Fail
0.0204	3	69	2300	Fail

0.0207	3			
0.0211	3	69	2300	Fail
0.0215	3	69	2300	Fail
0.0218	3	69	2300	Fail
0.0222	3	69	2300	Fail
0.0226	3	68	2266	Fail
0.0229	3	66	2200	Fail
0.0233	3	64	2133	Fail
0.0236	3	64	2133	Fail
0.0240	3	64	2133	Fail
0.0244	3	63	2100	Fail
0.0247	3	63	2100	Fail
0.0251	3	63	2100	Fail
0.0255	3	63	2100	Fail
0.0258	3	63	2100	Fail
0.0262	3	62	2066	Fail
0.0265	3	62	2066	Fail
0.0269	3	60	2000	Fail
0.0273	3	60	2000	Fail
0.0276	3	60	2000	Fail
0.0280	3	60	2000	Fail
0.0284	3	59	1966	Fail
0.0287	3	59	1966	Fail
0.0291	2	58	2900	Fail
0.0294	2	58	2900	Fail
0.0298	2	58	2900	Fail
0.0302	2	58	2900	Fail
0.0305	2	58	2900	Fail
0.0309	2	58	2900	Fail
0.0313	2	58	2900	Fail
0.0316	2	58	2900	Fail
0.0320	1	58	5800	Fail
0.0323	1	57	5700	Fail
0.0327	1	55	5500	Fail
0.0331	1	54	5400	Fail
0.0334	1	53	5300	Fail
0.0338	1	53	5300	Fail
0.0342	1	53	5300	Fail
0.0345	0	53	n / a	Fail
0.0349	0	52	n / a	Fail
0.0352	0	52	n / a	Fail
0.0356	0	52	n / a	Fail
0.0360	0	52	n / a	Fail
0.0363	0	52	n / a	Fail
0.0367	0	52	n / a	Fail
0.0371	0	52	n / a	Fail
0				
0				

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.
The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality
Water Quality BMP Flow and Volume for POC \#1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min : 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for $15 \mathrm{~min}: \quad 0 \mathrm{cfs}$.

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Trapezoidal Pond 1POC	\square	84.47			\square	99.88			
Total Volume Infiltrated		84.47	0.00	0.00		99.88	0.00	0\%	No Treat. Credit
Compliance with LID Standard 8% of $2-\mathrm{yr}$ to 50% of $2-\mathrm{yr}$									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes
No IMPLND changes have been made.

Appendix
 Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL

 WWHM4 model simulation START 19551001 END 20080930 RUN INTERP OUTPUT LEVEI 3 0 UNIT SYSTEM 1 END GLOBALFILES

<-ID->
WDM 26 Sienna II Basin F.wdm
MESSU 25 PreSienna II Basin F.MES
27 PreSienna II Basin F.L61
28 PreSienna II Basin F.L62
30 POCSienna II Basin F1.dat
END FILES
OPN SEQUENCE
INGRP INDELT 00:15
PERLND 1
COPY 501
DISPLY 1
END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1
\# - \#<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Basin 1 MAX $\quad 1 \begin{array}{llrrr}9 & 30 & 9\end{array}$
END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES

$\#$	-	NPT	NMN
1		1	1
$0 * *$			

 END TIMESERIES
 END COPY
GENER
OPCODE
\# \# OPCD ***
END OPCODE
PARM
\# \# K ***
END PARM
END GENER
PERLND
GEN-INFO

1 A/B, Forest, Flat 1 1 $1 \begin{array}{llllll} & 1 & 1 & 27 & 0\end{array}$
END GEN-INFO
*** Section PWATER***
ACTIVITY

$\begin{array}{llrrrrrrrrrrr}\# & \text { \# ATMP } & \text { SNOW PWAT } & \text { SED } & \text { PST } & \text { PWG PQAL MSTL PEST NITR PHOS TRAC } \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
END ACTIVITY
PRINT-INFO
<PLS > ***************** Print-flags ***************************** PIVL PYR
$\begin{array}{llrrrrrrrrrrrr}\# & \text { \# ATMP } & \text { SNOW PWAT } & \text { SED } & \text { PST } & \text { PWG PQAL MSTL } & \text { PEST } & \text { NITR PHOS } & \text { TRAC } & * * * * * * * * * ~ \\ 1 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$
END PRINT-INFO

```
    PWAT-PARM1
    <PLS > PWATER variable monthly parameter value flags ***
    # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
    END PWAT-PARM1
    PWAT-PARM2
```



```
    1 [llllllll
    END PWAT-PARM2
    PWAT-PARM3
    <PLS > PWATER input info: Part 3 ***
    # - # ***PETMAX 
    END PWAT-PARM3
    PWAT-PARM4
    <PLS > PWATER input info: Part 4
    # - # CEPSC 
    END PWAT-PARM4
    PWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
                ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
    # - # *** CEPS 
END PWAT-STATE1
END PERLND
IMPLND
    GEN-INFO
        <PLS ><-------Name-------> Unit-systems Printer ***
        # # User t-series Engl Metr ***
    END GEN-INFO
    *** Section IWATER***
    ACTIVITY
        <PLS > ************* Active Sections *****************************
        # - # ATMP SNOW IWAT SLD IWG IQAL ***
    END ACTIVITY
PRINT-INFO
    <ILS > ******** Print-flags ********* PIVL PYR
    # - # ATMP SNOW IWAT SLD IWG IQAL *********
END PRINT-INFO
    IWAT-PARM1
        <PLS > IWATER variable monthly parameter value flags ***
        # - # CSNO RTOP VRS VNN RTLI ***
END IWAT-PARM1
    IWAT-PARM2
        <PLS > IWATER input info: Part 2 ***
        # - # *** LSUR SLSUR NSUR RETSC
END IWAT-PARM2
    IWAT-PARM3
        <PLS > IWATER input info: Part 3 ***
        # - # ***PETMAX PETMIN
END IWAT-PARM3
IWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
    # - # *** RETS SURS
END IWAT-STATE1
```

SCHEMATIC					
<-Source->	<--Area-->	<-Target->	MBLK	$* * *$	
<Name> \#	<-factor->	<Name>	\#	Tbl\#	$* * *$
Basin $1 * * *$		0.43	COPY	501	12
PERLND 1	0.43	COPY	501	13	

```
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1
```

<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> \# <Name> \# \#<-factor->strg <Name> \# \# <Name> \# \# ***
END NETWORK
RCHRES
GEN-INFO

\# - \#<----------------><---> User T-series Engl Metr LKFG ***
END GEN-INFO
*** Section RCHRES***
ACTIVITY

\# - \# HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
END ACTIVITY
PRINT-INEO
<PLS > ***************** Print-flags ******************* PIVL PYR
\# - \# HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *********
END PRINT-INEO
HYDR-PARM1
RCHRES Flags for each HYDR Section ***
\# - \# VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each
$\underset{*}{\mathrm{FG}} \underset{*}{\mathrm{FG}} \underset{*}{\mathrm{FG}} \underset{*}{\mathrm{possible}} \underset{*}{\operatorname{exit}} \underset{*}{* * *} \underset{*}{\operatorname{possible}} \underset{*}{\text { exit }} \underset{*}{\text { possible }}$ exit
END HYDR-PARM1
HYDR-PARM2

END HYDR-PARM2
HYDR-INIT
RCHRES Initial conditions for each HYDR section ***
\# - \# *** VOI Initial value of COLIND Initial value of OUTDGT
*** ac-ft for each possible exit for each possible exit

END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES

END MASS-LINK
END RUN

Mitigated UCI File

RUN
GLOBAL

| WWHM4 model simulation | | |
| :--- | :--- | :--- | :--- |
| START | 195510 01 | END 20080930 |

RUN INTERP OUTP 10 3 0 UNIT SYSTEM 1 END GLOBAL

FILES

<-ID->
WDM 26 Sienna II Basin F.wdm
MESSU 25 MitSienna II Basin F.MES
27 MitSienna II Basin F.L61
28 MitSienna II Basin F.L62
30 POCSienna II Basin F1.dat
END FILES

OPN SEQUENCE
INGRP
$\begin{array}{lr}\text { IMP LND } & 1\end{array}$
RCHRES 1
COPY 1
COPY 501
DISPLY 1

END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1

END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES

END TIMESERIES
END COPY
GENER
OPCODE
\# \# OPCD ***
END OPCODE
PARM
\# \# K ***
END PARM
END GENER
PERLND
GEN-INFO
<PLS ><-------Name------->NBLKS Unit-systems Printer *** \# - \# User t-series Engl Metr ***

END GEN-INFO
*** Section PWATER***
ACTIVITY

\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
END ACTIVITY

PRINT-INFO
$<\mathrm{PLS}>* * * * * * * * * * * * * * * * *$ Print-flags ***************************** PIVL PYR
\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
END PRINT-INFO

```
    PWAT-PARM1
    <PLS > PWATER variable monthly parameter value flags ***
    # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
    END PWAT-PARM1
    PWAT-PARM2
```



```
    END PWAT-PARM2
    PWAT-PARM3
```



```
    END PWAT-PARM3
PWAT-PARM4
    <PLS > PWATER input info: Part 4 ***
    # - # CEPSC UZSN NSUR INTFW IRC IZETP ***
END PWAT-PARM4
PWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
                        ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
```



```
END PWAT-STATE1
```

```
END PERLND
```

END PERLND
IMP LND
GEN-INFO

```

```

END GEN-INFO
*** Section IWATER***
ACTIVITY
<PLS > ************** Active Sections ******************************
\# - \# ATMP SNOW IWAT SLD IWG IQAL ***
1 0
END ACTIVITY
PRINT-INFO

<ILS	> *****	**	rint	lags	******** IWG IQAL		$\underset{* * * * * * * * *}{\text { PIVL }}$		
\# -	\# ATMP	SNOW	IWAT	SLD					
1	0	0	4	0	0	0	1		9
14	0	0	4	0	0	0	1	1	9

IWAT-PARM1
<PLS > IWATER variable monthly parameter value flags ***
\# - \# CSNO RTOP VRS VNN RTLI ***
1 14
END IWAT-PARM1
IWAT-PARM2
<PLS > \# *** IWATER input info: Part 2 ISUR SLSUR N NSUR NETSC
1 400 0.01 0.1 0.1
14 400 0.01 0.1 0.1
END IWAT-PARM2
IWAT-PARM3
<PLS > IWATER input info: Part 3 ***
\# - \# ***PETMAX PETMIN
1 [ll

```
```

IWAT-STATE1
<PLS > *** Initial conditions at start of simulation
\# - \# *** RETS SURS
1 0
14 0 0
END IWAT-STATE1

```

END IMPLND
SCHEMATIC


\section*{END SCHEMATIC}

NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> \# <Name> \# \#<-factor->strg <Name> \# \# <Name> \# \# *** COPY 501 OUTPUT MEAN 1148 DISPLY 18 INPUT TIMSER 1
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> \# <Name> \# \#<-factor->strg <Name> \# \# <Name> \# \# *** END NETWORK

\section*{RCHRES}


ACTIVITY
```

 <PLS > ************** Active Sections ******************************
 # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
    ```
    PRINT-INFO

    END PRINT-INFO
    HYDR-PARM1
        RCHRES Flags for each HYDR Section ***
        \# - \# VC A1 A2 A3 ODFVFG for each \(* * *\) ODGTFG for each FUNCT for each
        FG FG FG FG possible exit *** possible exit possible exit

    END HYDR-PARM1
    HYDR-PARM2


END HYDR-PARM2
HYDR-INIT
RCHRES Initial conditions for each HYDR section
\# \# *** VOL Initial value of COIIND Initial value of OUTDGT for each possible exit for each possible exit
        \(\begin{array}{ccccc}\langle---><--><--><--><---> \\ 4.0 & 5.0 & 0.0 & 0.0 & 0.0\end{array}\)
                                \(\begin{array}{cc}* * * & <---><---><---><---><---> \\ 0.0 & 0.0\end{array} 0.0 \begin{array}{lll}0.0 & 0.0\end{array}\)


END HYDR-INIT END RCHRES
END
```

SPEC-ACTIONS
SPEC-ACTIONS
SPEC-ACTIONS

| FTABLE | 1 | |
| :--- | :--- | :--- |
| 91 | 5 | |

 FTABIEE
 1
    ```
Depth
(ft)
    0.000000
    0.055556
    0.111111
    0.166667
0.222222
    0.277778
    0.333333
    0.388889
    0.444444
0.500000
    0.555556
    0.611111
    0.666667
    0.722222
0.777778
    0.833333
    0.888889
    0.944444
    1.000000
    1. 111111
    1. 166667
    1. 222222
    1. 277778
    1.333333
    1. 388889
    1. 444444
    1. 500000
    1. 555556
    \(\begin{array}{ll}1.611111 & 0.040270 \\ 1.641115\end{array}\)
    1. 666667
    1. 722222
    \(1.777778 \quad 0.042820\)
    \(1.833333 \quad 0.044545\)
    \(1.888889 \quad 0.045416\)
    \(1.944444 \quad 0.046291\)
    \(\begin{array}{ll}2.000000 & 0.047172 \\ 2.055556 & 0.048057\end{array}\)
    2. 111111
    2.166667
    2.222222
    2.277778
    2.333333
    2.388889
    2.444444
    2.500000
    2.555556
    2.611111
    2.666667
    2.722222
    \(2.777778 \quad 0.059083\)
    \(2.833333 \quad 0.060992\)
    \(2.888889 \quad 0.061954\)
    \(2.944444 \quad 0.062921\)
    \(3.000000 \quad 0.063893\)
            Depth
                        Area Volume
                Outflow1

Outflow2
(cfs) 0.000000
0.012121
0.012563
0.013009
0.013457
0.013909
0.014363
0.014821
0.015282
0.015747
0.016214
0.016685
0.017159
0.017636
0.018117
0.018600
0.019087
0.019577
0.020070
0.020566
0.021065
0.021568
0.022074
0.022583
0.023095
0.023610
0.024129
0.024651
0.025176
0.025704
0.026235
0.026770
0.027307
0.027848
0.028392
0.028940
0.029490
0.030044
0.030601
0.031161
0.031724
0.032290
0.032860
0.033433
0.034009
0.034588
0.035170
0.035756
0.036345
0.036937
0.037532
0.038130
0.038732
0.039336
0.039944

Velocity Travel Time***
(ft/sec)
(Minutes) \(* * *\) (Minutes) ***
\begin{tabular}{lllll}
3.055556 & 0.064871 & 0.123730 & 0.000000 & 0.040555 \\
3.111111 & 0.065853 & 0.127361 & 0.000000 & 0.041169 \\
3.166667 & 0.066841 & 0.131047 & 0.000000 & 0.041787 \\
3.222222 & 0.067834 & 0.134788 & 0.000000 & 0.042407 \\
3.277778 & 0.068832 & 0.138584 & 0.000000 & 0.043031 \\
3.333333 & 0.069835 & 0.142436 & 0.000000 & 0.043658 \\
3.388889 & 0.070843 & 0.146344 & 0.000000 & 0.044289 \\
3.444444 & 0.071856 & 0.150307 & 0.000000 & 0.044922 \\
3.500000 & 0.072874 & 0.154328 & 0.000000 & 0.045559 \\
3.555556 & 0.073898 & 0.158405 & 0.208271 & 0.046198 \\
3.611111 & 0.074926 & 0.162539 & 0.587805 & 0.046841 \\
3.666667 & 0.075960 & 0.166730 & 1.074270 & 0.047487 \\
3.722222 & 0.076998 & 0.170979 & 1.636945 & 0.048137 \\
3.777778 & 0.078042 & 0.175285 & 2.248837 & 0.048789 \\
3.833333 & 0.079091 & 0.179650 & 2.882519 & 0.049445 \\
3.888889 & 0.080145 & 0.184073 & 3.509920 & 0.050104 \\
3.944444 & 0.081204 & 0.188555 & 4.103633 & 0.050766 \\
4.000000 & 0.082268 & 0.193096 & 4.639092 & 0.051431 \\
4.055556 & 0.083337 & 0.197696 & 5.097354 & 0.052100 \\
4.111111 & 0.084412 & 0.202356 & 5.468342 & 0.052771 \\
4.166667 & 0.085491 & 0.207076 & 5.754494 & 0.053446 \\
4.222222 & 0.086576 & 0.211855 & 5.974760 & 0.054124 \\
4.277778 & 0.087666 & 0.216695 & 6.249853 & 0.054806 \\
4.333333 & 0.088760 & 0.221596 & 6.469213 & 0.055490 \\
4.388889 & 0.089860 & 0.226558 & 6.681374 & 0.056178 \\
4.444444 & 0.090965 & 0.231581 & 6.887003 & 0.056868 \\
4.500000 & 0.092075 & 0.236665 & 7.086668 & 0.057562 \\
4.555556 & 0.093190 & 0.241811 & 7.280859 & 0.058260 \\
4.611111 & 0.094311 & 0.247020 & 7.470004 & 0.058960 \\
4.666667 & 0.095436 & 0.252291 & 7.654476 & 0.059664 \\
4.722222 & 0.096567 & 0.257624 & 7.834606 & 0.060370 \\
4.777778 & 0.097702 & 0.263020 & 8.010686 & 0.061080 \\
4.833333 & 0.098843 & 0.268480 & 8.182979 & 0.061793 \\
4.888889 & 0.099989 & 0.274003 & 8.351718 & 0.062510 \\
4.944444 & 0.101140 & 0.279590 & 8.517114 & 0.063229 \\
5.000000 & 0.102296 & 0.285241 & 8.679360 & 0.063952 \\
ENDFTABLE & 1 & 1 & & \\
END FTABLES & & 1 & &
\end{tabular}

EXT SOURCES


END EXT SOURCES
EXT TARGETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline <-Volume-> & \multirow[t]{2}{*}{<-Grp>} & \multicolumn{4}{|l|}{<-Member-><--Mult-->Tran} & \multicolumn{2}{|l|}{<-Volume->} & <Member> & Tsys & Tgap & Amd *** \\
\hline <Name> \# & & <Name> & & & tor-> & <Na. & \# & <Name> & tem & strg & strg*** \\
\hline RCHRES 1 & HYDR & RO & 1 & 1 & 1 & WDM & 1000 & FLOW & ENGL & & REPL \\
\hline RCHRES 1 & HYDR & 0 & 1 & 1 & 1 & WDM & 1001 & FLOW & ENGL & & REPL \\
\hline RCHRES 1 & HYDR & 0 & 2 & 1 & 1 & WDM & 1002 & FLOW & ENGL & & REPL \\
\hline RCHRES 1 & HYDR & STAGE & 1 & 1 & 1 & WDM & 1003 & STAG & ENGL & & REPL \\
\hline COPY 1 & OUTPUT & MEAN & & 1 & 48.4 & WDM & 701 & FLOW & ENGL & & REPL \\
\hline COPY 501 & OUTPUT & MEAN & 1 & 1 & 48.4 & WDM & 801 & FLOW & ENGL & & REPL \\
\hline
\end{tabular}

END EXT TARGETS
MASS-LINK


MASS-LTNK 17
RCHRES OFLOW OVOL 1 COPY INPUT MEAN
END MASS-LINK 17

FND MASS-EINK
END RUN

\section*{Predeveloped HSPF Message File}

Mitigated HSPF Message File

\section*{Disclaimer}

\section*{Legal Notice}

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc.
6200 Capitol Blvd. Ste F
Olympia, WA. 98501
Toll Free 1(866)943-0304
Local (360)943-0304
www.clearcreeksolutions.com

\section*{WWHM2012}

\section*{PROJECT REPORT}

\section*{General Model Information}

Project Name: \(\quad\) Sienna II Basin G
Site Name: Sienna Pond G
Site Address:
City:
Report Date: 1/10/2023
Gage: Olympia Airport
Data Start: 1955/10/01
Data End: 2008/09/30
Timestep: 15 Minute
Precip Scale: 1.111
Version Date: 2021/08/18
Version: 4.2.18

\section*{POC Thresholds}

\author{
Low Flow Threshold for POC1: 50 Percent of the 2 Year High Flow Threshold for POC1: 50 Year
}

\section*{Landuse Basin Data}

Predeveloped Land Use
Basin 1
Bypass: ..... No
GroundWater: ..... No
Pervious Land Use ..... acre
A B, Forest, Flat ..... 2.39
Pervious Total ..... 2.39
Impervious Land Use ..... acre
Impervious Total ..... 0
Basin Total ..... 2.39
Element Flows To:
Surface Interflow Groundwater

Mitigated Land Use

\section*{Basin 1}
Bypass: No
GroundWater: No
Pervious Land Use acre
Pervious Total ..... 0
Impervious Land Use acre
ROADS FLAT ..... 1.47
POND ..... 0.92
Impervious Total ..... 2.39
Basin Total ..... 2.39
Element Flows To:
Surface Interflow GroundwaterTrapezoidal Pond 1 Trapezoidal Pond 1

\section*{Routing Elements \\ Predeveloped Routing}

\section*{Mitigated Routing}

Trapezoidal Pond 1

Bottom Length:
Bottom Width:
Depth:
Volume at riser head:
Infiltration On
Infiltration rate:
Infiltration safety factor:
Wetted surface area On
Total Volume Infiltrated (ac-ft.):
Total Volume Through Riser (ac-ft.):
Total Volume Through Facility (ac-ft.):
Percent Infiltrated:
Total Precip Applied to Facility:
Total Evap From Facility:
Side slope 1:
Side slope 2:
Side slope 3:
Side slope 4:
Discharge Structure
Riser Height:
Riser Diameter:
Element Flows To:
Outlet 1

4 ft .
18 in.

Outlet 2
100.00 ft .
50.00 ft .

10 ft .
0.8904 acre-feet.
0.92 1

Pond Hydraulic Table
\begin{tabular}{lllll} 
Stage(feet) & Area(ac.) & Volume(ac-ft.) & Discharge(cfs) & Infilt(cfs) \\
182.00 & 0.114 & 0.000 & 0.000 & 0.000 \\
182.11 & 0.119 & 0.013 & 0.000 & 0.111 \\
182.22 & 0.124 & 0.026 & 0.000 & 0.115 \\
182.33 & 0.129 & 0.040 & 0.000 & 0.120 \\
182.44 & 0.134 & 0.055 & 0.000 & 0.125 \\
182.56 & 0.140 & 0.070 & 0.000 & 0.130 \\
182.67 & 0.145 & 0.086 & 0.000 & 0.135 \\
182.78 & 0.151 & 0.103 & 0.000 & 0.140 \\
182.89 & 0.156 & 0.120 & 0.000 & 0.145 \\
183.00 & 0.162 & 0.137 & 0.000 & 0.150 \\
183.11 & 0.168 & 0.156 & 0.000 & 0.155 \\
183.22 & 0.173 & 0.175 & 0.000 & 0.161 \\
183.33 & 0.179 & 0.194 & 0.000 & 0.166 \\
183.44 & 0.185 & 0.215 & 0.000 & 0.172 \\
183.56 & 0.192 & 0.236 & 0.000 & 0.178 \\
183.67 & 0.198 & 0.257 & 0.000 & 0.183 \\
183.78 & 0.204 & 0.280 & 0.000 & 0.189 \\
183.89 & 0.210 & 0.303 & 0.000 & 0.195 \\
184.00 & 0.217 & 0.327 & 0.000 & 0.201 \\
184.11 & 0.224 & 0.351 & 0.000 & 0.207 \\
184.22 & 0.230 & 0.376 & 0.000 & 0.214 \\
184.33 & 0.237 & 0.402 & 0.000 & 0.220 \\
184.44 & 0.244 & 0.429 & 0.000 & 0.226 \\
184.56 & 0.251 & 0.457 & 0.000 & 0.233 \\
184.67 & 0.258 & 0.485 & 0.000 & 0.239 \\
184.78 & 0.265 & 0.514 & 0.000 & 0.246
\end{tabular}
\begin{tabular}{lllll} 
& & & \\
184.89 & 0.273 & 0.544 & 0.000 & 0.253 \\
185.00 & 0.280 & 0.575 & 0.000 & 0.260 \\
185.11 & 0.287 & 0.606 & 0.000 & 0.267 \\
185.22 & 0.295 & 0.639 & 0.000 & 0.274 \\
185.33 & 0.303 & 0.672 & 0.000 & 0.281 \\
185.44 & 0.310 & 0.706 & 0.000 & 0.288 \\
185.56 & 0.318 & 0.741 & 0.000 & 0.295 \\
185.67 & 0.326 & 0.777 & 0.000 & 0.302 \\
185.78 & 0.334 & 0.814 & 0.000 & 0.310 \\
185.89 & 0.342 & 0.851 & 0.000 & 0.317 \\
186.00 & 0.351 & 0.890 & 0.000 & 0.325 \\
186.11 & 0.359 & 0.929 & 0.587 & 0.333 \\
186.22 & 0.367 & 0.970 & 1.636 & 0.341 \\
186.33 & 0.376 & 1.011 & 2.882 & 0.349 \\
186.44 & 0.384 & 1.053 & 4.103 & 0.357 \\
186.56 & 0.393 & 1.097 & 5.097 & 0.365 \\
186.67 & 0.402 & 1.141 & 5.754 & 0.373 \\
186.78 & 0.411 & 1.186 & 6.249 & 0.381 \\
186.89 & 0.420 & 1.232 & 6.681 & 0.389 \\
187.00 & 0.429 & 1.279 & 7.086 & 0.398 \\
187.11 & 0.438 & 1.328 & 7.470 & 0.406 \\
187.22 & 0.447 & 1.377 & 7.834 & 0.415 \\
187.33 & 0.457 & 1.427 & 8.183 & 0.424 \\
187.44 & 0.466 & 1.478 & 8.517 & 0.432 \\
187.56 & 0.476 & 1.531 & 8.838 & 0.441 \\
187.67 & 0.485 & 1.584 & 9.148 & 0.450 \\
187.78 & 0.495 & 1.639 & 9.448 & 0.459 \\
187.89 & 0.505 & 1.694 & 9.739 & 0.468 \\
188.00 & 0.515 & 1.751 & 10.02 & 0.478 \\
188.11 & 0.525 & 1.809 & 10.29 & 0.487 \\
188.22 & 0.535 & 1.868 & 10.56 & 0.496 \\
188.33 & 0.545 & 1.928 & 10.82 & 0.506 \\
188.44 & 0.556 & 1.989 & 11.08 & 0.515 \\
188.56 & 0.566 & 2.052 & 11.32 & 0.525 \\
188.67 & 0.577 & 2.115 & 11.57 & 0.535 \\
188.78 & 0.587 & 2.180 & 11.81 & 0.545 \\
188.89 & 0.598 & 2.246 & 12.04 & 0.555 \\
189.00 & 0.609 & 2.313 & 12.27 & 0.565 \\
189.11 & 0.620 & 2.381 & 12.50 & 0.575 \\
189.22 & 0.631 & 2.450 & 12.72 & 0.585 \\
189.33 & 0.642 & 2.521 & 12.93 & 0.595 \\
189.44 & 0.653 & 2.593 & 13.15 & 0.606 \\
189.56 & 0.664 & 2.666 & 13.36 & 0.616 \\
189.67 & 0.675 & 2.741 & 13.57 & 0.627 \\
189.78 & 0.687 & 2.817 & 13.77 & 0.637 \\
189.89 & 0.698 & 2.894 & 13.97 & 0.648 \\
190.00 & 0.710 & 2.972 & 14.17 & 0.659 \\
190.11 & 0.722 & 3.051 & 14.36 & 0.670 \\
190.22 & 0.734 & 3.132 & 14.56 & 0.681 \\
190.33 & 0.746 & 3.215 & 14.75 & 0.692 \\
190.44 & 0.758 & 3.298 & 14.94 & 0.703 \\
190.56 & 0.770 & 3.383 & 15.12 & 0.714 \\
190.67 & 0.782 & 3.469 & 15.30 & 0.725 \\
190.78 & 0.794 & 3.557 & 15.49 & 0.737 \\
190.89 & 0.807 & 3.646 & 15.66 & 0.748 \\
191.00 & 0.819 & 3.736 & 15.84 & 0.760 \\
191.11 & 0.832 & 3.828 & 16.02 & 0.772 \\
191.22 & 0.845 & 3.921 & 16.19 & 0.783 \\
& & & & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
191.33 & 0.857 & 4.016 & 16.36 & 0.795 \\
191.44 & 0.870 & 4.112 & 16.53 & 0.807 \\
191.56 & 0.883 & 4.209 & 16.70 & 0.819 \\
191.67 & 0.896 & 4.308 & 16.87 & 0.831 \\
191.78 & 0.910 & 4.409 & 17.03 & 0.844 \\
191.89 & 0.923 & 4.511 & 17.19 & 0.856 \\
192.00 & 0.936 & 4.614 & 17.35 & 0.868 \\
192.11 & 0.950 & 4.719 & 17.51 & 0.881
\end{tabular}

Analysis Results
POC 1


Predeveloped Landuse Totals for POC \#1
Total Pervious Area:
2.39

Total Impervious Area: 0
Mitigated Landuse Totals for POC \#1
Total Pervious Area: 0
Total Impervious Area: 2.39
Flow Frequency Method: Log Pearson Type III 17B
Flow Frequency Return Periods for Predeveloped. POC \#1
Return Period
Flow(cfs)
0.013081

2 year
0.040479

5 year
10 year
0.073057

25 year
0.137128

50 year
0.205958

100 year
0.296945

Flow Frequency Return Periods for Mitigated. POC \#1

Return Period
2 year
5 year
10 year
25 year
50 year
100 year
Annual Peaks
Annual Peaks for Predeveloped and Mitigated. POC \#1
Year
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

Predeveloped Mitigated
\(0.025 \quad 0.000\)
\(0.014 \quad 0.000\)
\(0.011 \quad 0.000\)
\(0.009 \quad 0.000\)
\(0.056 \quad 0.000\)
\(0.050 \quad 0.000\)
\(0.002 \quad 0.000\)
\(0.074 \quad 0.000\)
\(0.042 \quad 0.000\)
\(0.047 \quad 0.000\)
\begin{tabular}{lll}
1966 & 0.024 & 0.000 \\
1967 & 0.016 & 0.000 \\
1968 & 0.011 & 0.000 \\
1969 & 0.002 & 0.000 \\
1970 & 0.008 & 0.000 \\
1971 & 0.016 & 0.000 \\
1972 & 0.039 & 0.000 \\
1973 & 0.002 & 0.000 \\
1974 & 0.029 & 0.000 \\
1975 & 0.017 & 0.000 \\
1976 & 0.015 & 0.000 \\
1977 & 0.002 & 0.000 \\
1978 & 0.015 & 0.000 \\
1979 & 0.006 & 0.000 \\
1980 & 0.012 & 0.000 \\
1981 & 0.015 & 0.000 \\
1982 & 0.013 & 0.000 \\
1983 & 0.007 & 0.000 \\
1984 & 0.031 & 0.000 \\
1985 & 0.002 & 0.000 \\
1986 & 0.027 & 0.000 \\
1987 & 0.160 & 0.000 \\
1988 & 0.002 & 0.000 \\
1989 & 0.002 & 0.000 \\
1990 & 0.092 & 0.000 \\
1991 & 0.080 & 0.000 \\
1992 & 0.002 & 0.000 \\
1993 & 0.004 & 0.000 \\
1994 & 0.002 & 0.000 \\
1995 & 0.013 & 0.000 \\
1996 & 0.047 & 0.000 \\
1997 & 0.050 & 0.000 \\
1998 & 0.008 & 0.000 \\
1999 & 0.058 & 0.000 \\
2000 & 0.007 & 0.000 \\
2001 & 0.002 & 0.000 \\
2002 & 0.014 & 0.000 \\
2003 & 0.002 & 0.000 \\
2004 & 0.065 & 0.000 \\
2005 & 0.002 & 0.000 \\
2006 & 0.190 & 0.000 \\
2007 & 0.060 & 0.498 \\
2008 & 0.005 & 0.000 \\
& 0 & \\
\hline & & \\
\hline
\end{tabular}

\section*{Ranked Annual Peaks}

Ranked Annual Peaks for Predeveloped and Mitigated. POC \#1

Rank
1
2
3
4
5
6
7
8
9
10
11

Predeveloped Mitigated
\begin{tabular}{ll}
0.1900 & 0.4984 \\
0.1604 & 0.0000 \\
0.0922 & 0.0000 \\
0.0802 & 0.0000 \\
0.0736 & 0.0000 \\
0.0647 & 0.0000 \\
0.0597 & 0.0000 \\
0.0582 & 0.0000 \\
0.0561 & 0.0000 \\
0.0505 & 0.0000 \\
0.0498 & 0.0000
\end{tabular}
\begin{tabular}{lll} 
& & \\
12 & 0.0473 & 0.0000 \\
13 & 0.0469 & 0.0000 \\
14 & 0.0423 & 0.0000 \\
15 & 0.0394 & 0.0000 \\
16 & 0.0307 & 0.0000 \\
17 & 0.0288 & 0.0000 \\
18 & 0.0272 & 0.0000 \\
19 & 0.0253 & 0.0000 \\
20 & 0.0238 & 0.0000 \\
21 & 0.0171 & 0.0000 \\
22 & 0.0159 & 0.0000 \\
23 & 0.0159 & 0.0000 \\
24 & 0.0155 & 0.0000 \\
25 & 0.0151 & 0.0000 \\
26 & 0.0146 & 0.0000 \\
27 & 0.0138 & 0.0000 \\
28 & 0.0137 & 0.0000 \\
29 & 0.0127 & 0.0000 \\
30 & 0.0126 & 0.0000 \\
31 & 0.0120 & 0.0000 \\
32 & 0.0109 & 0.0000 \\
33 & 0.0107 & 0.0000 \\
34 & 0.0094 & 0.0000 \\
35 & 0.0083 & 0.0000 \\
36 & 0.0068 & 0.0000 \\
37 & 0.0067 & 0.0000 \\
38 & 0.0059 & 0.0000 \\
39 & 0.0048 & 0.0000 \\
40 & 0.0040 & 0.0000 \\
41 & 0.0021 & 0.0000 \\
42 & 0.0019 & 0.0000 \\
43 & 0.0019 & 0.0000 \\
44 & 0.0019 & 0.0000 \\
45 & 0.0019 & 0.0000 \\
46 & 0.0019 & 0.0000 \\
47 & 0.0019 & 0.0000 \\
48 & 0.0019 & 0.0000 \\
49 & 0.0000 \\
50 & 0.0000 \\
51 & 0.0000 \\
52 & 0.0000 \\
53 & & \\
& 0.0019 &
\end{tabular}

\section*{Duration Flows}
\begin{tabular}{|c|c|c|c|c|}
\hline Flow(cfs) & Predev & Mit & Percentage & Pass/Fail \\
\hline 0.0065 & 263 & 46 & 17 & Pass \\
\hline 0.0086 & 194 & 46 & 23 & Pass \\
\hline 0.0106 & 149 & 46 & 30 & Pass \\
\hline 0.0126 & 121 & 46 & 38 & Pass \\
\hline 0.0146 & 98 & 45 & 45 & Pass \\
\hline 0.0166 & 84 & 44 & 52 & Pass \\
\hline 0.0186 & 75 & 43 & 57 & Pass \\
\hline 0.0206 & 62 & 42 & 67 & Pass \\
\hline 0.0227 & 54 & 41 & 75 & Pass \\
\hline 0.0247 & 47 & 41 & 87 & Pass \\
\hline 0.0267 & 42 & 41 & 97 & Pass \\
\hline 0.0287 & 40 & 41 & 102 & Pass \\
\hline 0.0307 & 33 & 40 & 121 & Fail \\
\hline 0.0327 & 31 & 39 & 125 & Fail \\
\hline 0.0347 & 28 & 38 & 135 & Fail \\
\hline 0.0368 & 27 & 36 & 133 & Fail \\
\hline 0.0388 & 27 & 36 & 133 & Fail \\
\hline 0.0408 & 26 & 35 & 134 & Fail \\
\hline 0.0428 & 24 & 33 & 137 & Fail \\
\hline 0.0448 & 21 & 33 & 157 & Fail \\
\hline 0.0468 & 21 & 33 & 157 & Fail \\
\hline 0.0488 & 19 & 32 & 168 & Fail \\
\hline 0.0509 & 16 & 31 & 193 & Fail \\
\hline 0.0529 & 15 & 31 & 206 & Fail \\
\hline 0.0549 & 15 & 31 & 206 & Fail \\
\hline 0.0569 & 14 & 30 & 214 & Fail \\
\hline 0.0589 & 13 & 29 & 223 & Fail \\
\hline 0.0609 & 11 & 28 & 254 & Fail \\
\hline 0.0629 & 11 & 26 & 236 & Fail \\
\hline 0.0650 & 9 & 26 & 288 & Fail \\
\hline 0.0670 & 7 & 26 & 371 & Fail \\
\hline 0.0690 & 7 & 25 & 357 & Fail \\
\hline 0.0710 & 7 & 24 & 342 & Fail \\
\hline 0.0730 & 7 & 24 & 342 & Fail \\
\hline 0.0750 & 6 & 23 & 383 & Fail \\
\hline 0.0770 & 6 & 22 & 366 & Fail \\
\hline 0.0791 & 6 & 22 & 366 & Fail \\
\hline 0.0811 & 5 & 21 & 419 & Fail \\
\hline 0.0831 & 5 & 20 & 400 & Fail \\
\hline 0.0851 & 5 & 20 & 400 & Fail \\
\hline 0.0871 & 5 & 19 & 380 & Fail \\
\hline 0.0891 & 4 & 17 & 425 & Fail \\
\hline 0.0911 & 4 & 17 & 425 & Fail \\
\hline 0.0932 & 3 & 16 & 533 & Fail \\
\hline 0.0952 & 3 & 16 & 533 & Fail \\
\hline 0.0972 & 3 & 16 & 533 & Fail \\
\hline 0.0992 & 3 & 15 & 500 & Fail \\
\hline 0.1012 & 3 & 15 & 500 & Fail \\
\hline 0.1032 & 3 & 15 & 500 & Fail \\
\hline 0.1052 & 3 & 14 & 466 & Fail \\
\hline 0.1073 & 3 & 14 & 466 & Fail \\
\hline 0.1093 & 3 & 14 & 466 & Fail \\
\hline 0.1113 & 3 & 14 & 466 & Fail \\
\hline 0.1133 & & 14 & 466 & Fail \\
\hline
\end{tabular}
\begin{tabular}{lllll}
0.1153 & 3 & 14 & 466 & Fail \\
0.1173 & 3 & 14 & 466 & Fail \\
0.1193 & 3 & 14 & 466 & Fail \\
0.1214 & 3 & 14 & 466 & Fail \\
0.1234 & 3 & 14 & 466 & Fail \\
0.1254 & 3 & 14 & 466 & Fail \\
0.1274 & 3 & 14 & 466 & Fail \\
0.1294 & 3 & 14 & 466 & Fail \\
0.1314 & 3 & 14 & 466 & Fail \\
0.1334 & 3 & 13 & 433 & Fail \\
0.1355 & 3 & 13 & 433 & Fail \\
0.1375 & 3 & 13 & 433 & Fail \\
0.1395 & 3 & 12 & 400 & Fail \\
0.1415 & 3 & 12 & 400 & Fail \\
0.1435 & 3 & 12 & 400 & Fail \\
0.1455 & 3 & 12 & 400 & Fail \\
0.1475 & 3 & 12 & 400 & Fail \\
0.1496 & 3 & 12 & 400 & Fail \\
0.1516 & 3 & 12 & 400 & Fail \\
0.1536 & 3 & 12 & 400 & Fail \\
0.1556 & 3 & 12 & 400 & Fail \\
0.1576 & 3 & 12 & 400 & Fail \\
0.1596 & 3 & 12 & 400 & Fail \\
0.1616 & 2 & 12 & 600 & Fail \\
0.1637 & 2 & 12 & 600 & Fail \\
0.1657 & 2 & 12 & 600 & Fail \\
0.1677 & 2 & 12 & 600 & Fail \\
0.1697 & 2 & 12 & 600 & Fail \\
0.1717 & 2 & 12 & 600 & Fail \\
0.1737 & 2 & 12 & 600 & Fail \\
0.1757 & 2 & 12 & 600 & Fail \\
0.1778 & 1 & 12 & 1200 & Fail \\
0.1798 & 1 & 12 & 1200 & Fail \\
0.1818 & 1 & 12 & 1200 & Fail \\
0.1838 & 1 & 12 & 1200 & Fail \\
0.1858 & 1 & 12 & 1200 & Fail \\
0.1878 & 1 & 12 & 1200 & Fail \\
0.1898 & 1 & 12 & 1200 & Fail \\
0.1919 & 0 & 11 & \(n / a\) & Fail \\
0.1939 & 0 & 11 & \(n / a\) & Fail \\
0.1959 & 0 & 11 & \(n / a\) & Fail \\
0.1979 & 0 & 11 & n/a & Fail \\
0.1999 & 0 & 11 & \(n / a\) & Fail \\
0.2019 & 0 & 11 & \(n / a\) & Fail \\
0.2039 & 0 & 11 & \(n / a\) & Fail \\
0.2060 & 0 & 11 & \(\mathrm{n} / \mathrm{a}\) & Fail \\
& & & \\
\hline
\end{tabular}

The development has an increase in flow durations from \(1 / 2\) Predeveloped 2 year flow to the 2 year flow or more than a \(10 \%\) increase from the 2 year to the 50 year flow.
The development has an increase in flow durations for more than \(50 \%\) of the flows for the range of the duration analysis.

Water Quality
Water Quality BMP Flow and Volume for POC \#1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for \(15 \mathrm{~min}: \quad 0\) cfs.
Off-line facility target flow: 0 cfs.
Adjusted for \(15 \mathrm{~min}: \quad 0\) cfs.

\section*{LID Report}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LID Technique & Used for Treatment? & \begin{tabular}{|l|} 
Total Volume \\
Needs \\
Treatment \\
(ac-ft)
\end{tabular} & Volume Through Facility (ac-ft) & Infiltration Volume (ac-ft) & \begin{tabular}{l}
Cumulative \\
Volume \\
Infiltration \\
Credit
\end{tabular} & Percent Volume Infiltrated & Water Quality & \begin{tabular}{l}
Percent \\
Water Quality \\
Treated
\end{tabular} & Comment \\
\hline Trapezoidal Pond 1 POC & \(\square\) & 469.46 & & & \(\square\) & 99.97 & & & \\
\hline Total Volume Infiltrated & & 469.46 & 0.00 & 0.00 & & 99.97 & 0.00 & 0\% & No Treat. Credit \\
\hline Compliance with LID Standard \(8 \%\) of 2 -yr to \(50 \%\) of \(2-y \mathrm{r}\) & & & & & & & & &  \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

\section*{Model Default Modifications}

Total of 0 changes have been made.

\section*{PERLND Changes}

No PERLND changes have been made.

\section*{IMPLND Changes}

No IMPLND changes have been made.

Appendix
Predeveloped Schematic


Mitigated Schematic


\section*{Predeveloped UCI File}

RUN
GLOBAL


FILES
```

<File> <Un\#> <-----------File Name--****
<-ID->
WDM 26 Sienna II Basin G.wdm
MESSU 25 PreSienna II Basin G.MES
27 PreSienna II Basin G.L61
28 PreSienna II Basin G.L62
30 POCSienna II Basin G1.dat

```
END FILES
OPN SEQUENCE
    INGRP INDELT 00:15
        PERLND 1
        COPY 501
        DISPLY 1
        END INGRP
END OPN SEQUENCE
DISPLY
    DISPLY-INFO1
        \# - \#<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
        1 Basin 1 MAX 1 1 \(20 \begin{array}{lllll} & 30 & 9\end{array}\)
    END DISPLY-INFO1
END DISPLY
COPY
    TIMESERIES
\begin{tabular}{rrrr}
\(\#\) & \# & NPT & NMN \\
1 & & 1 & 1 \\
501 & & 1 & 1
\end{tabular}
    END TIMESERIES
END COPY
GENER
    OPCODE
        \# \# OPCD ***
    END OPCODE
    PARM
        \# \# K ***
    END PARM
END GENER
PERLND
    GEN-INFO
        <PLS ><-------Name------->NBLKS Unit-systems Printer ***
            \# \# User t-series Engl Metr ***
    1 A/B, Forest, Flat 1 1 \(\begin{array}{llrrrrr}0 & 1 & 1 & 27 & 0\end{array}\)
    END GEN-INFO
    *** Section PWATER***
    ACTIVITY

            \# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
    END ACTIVITY
    PRINT-INFO
            <PLS > ***************** Print-flags ***************************** PIVL PYR
            \# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC \(\quad\) *********
    END PRINT-INFO
```

 PWAT-PARM1
 <PLS > PWATER variable monthly parameter value flags ***
    ```

```

 END PWAT-PARM1
 PWAT-PARM2
    ```

```

 END PWAT-PARM2
 PWAT-PARM3
    ```

```

 END PWAT-PARM3
 PWAT-PARM4
    ```

```

 1 [llllll
 END PWAT-PARM4
 PWAT-STATE1
 <PLS > *** Initial conditions at start of simulation
 ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # - # *** CEPS SURS UZS IFWS LZS AGWS GWVS
 1 0 0 0 0 0
 END PWAT-STATE1
 END PERLND
IMPLND
GEN-INFO
<PLS ><-------Name-------> Unit-systems Printer ***
\# - U User t-series Engl Metr ***
END GEN-INFO
*** Section IWATER***
ACTIVITY
<PLS > ************** Active Sections *******************************
\# - \# ATMP SNOW IWAT SLD IWG IQAL ***
END ACTIVITY
PRINT-INFO
<ILS > ******** Print-flags ********* PIVL PYR
\# - \# ATMP SNOW IWAT SLD IWG IQAL *********
END PRINT-INFO
IWAT-PARM1
<PLS > IWATER variable monthly parameter value flags ***
\# - \# CSNO RTOP VRS VNN RTLI ***
END IWAT-PARM1
IWAT-PARM2
<PLS > IWATER input info: Part 2 ***
\# - \# *** LSUR SLSUR NSUR RETSC
END IWAT--PARM2
IWAT-PARM3
<PLS > IWATER input info: Part 3 ***
\# - \# ***PETMAX PETMIN
END IWAT-PARM3
IWAT-STATE1
<PLS > *** Initial conditions at start of simulation
\# - \# *** RETS SURS
END IWAT-STATE1

```



\section*{RCHRES}

GEN-INFO
\begin{tabular}{|c|c|c|c|c|c|}
\hline RCHRES & Name & Nexits & Unit Systems & Printer & ** \\
\hline \multirow[t]{2}{*}{\#} & & ><----> & ser T-series & Engl Metr LKFG & *** \\
\hline & & & in out & & *** \\
\hline
\end{tabular}

END GEN-INFO
*** Section RCHRES***
ACTIVITY
<PLS > ************* Active Sections \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~+~\)
\# - \# HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
END ACTIVITY
PRINT-INFO
<PLS > \(* * * * * * * * * * * * * * * * *\) Print-flags \(* * * * * * * * * * * * * * * * * * * ~ P I V I ~ P Y R ~\)
\# - \# HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********* END PRINT-INFO

HYDR-PARM1
RCHRES Flags for each HYDR Section *** \# - \# VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each

END HYDR-PARM1


END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES



RUN
```

GLOBAL
WWHM4 model simulation
START 1955 10 01 END 2008 09 30
RUN INTERP OUTPUT LEVEL 3
RESUME O RUN 1 UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un\#> <-----------File Name--
<-ID->
WDM 26 Sienna II Basin G.wdm
MESSU 25 MitSienna II Basin G.MES
27 MitSienna II Basin G.L61
28 MitSienna II Basin G.L62
30 POCSienna II Basin G1.dat
END FILES
OPN SEQUENCE
INGRP
INDELT 00:15
IMP LND 1
IMPLND 14
RCHRES 1
COPY 1
COPY 501
DISPLY 1
END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1
\# - \#<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Trapezoidal Pond 1 MAX 1 2 0 30 9
END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES
\# - \# NPT NMN ***
501 1 1
END TIMESERIES
END COPY
GENER
OPCODE
\# \# OPCD ***
END OPCODE
PARM
\# \# K ***
END PARM
END GENER
PERLND
GEN-INFO
<PLS ><-------Name------->NBLKS Unit-systems Printer ***
\# - \# User t-series Engl Metr ***
END GEN-INFO
*** Section PWATER***
ACTIVITY
<PLS > ************* Active Sections ******************************
\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
END ACTIVITY
PRINT-INFO
<PLS > ******************* Print-flags ******************************** PIVL PYR
\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
END PRINT-INFO

```
```

 PWAT-PARM1
 <PLS > PWATER variable monthly parameter value flags ***
 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
 END PWAT-PARM1
 PWAT-PARM2
    ```

```

 END PWAT-PARM2
 PWAT-PARM3
    ```

```

 END PWAT-PARM3
 PWAT-PARM4
 <PLS > PWATER input info: Part 4 ***
 # - CEPSC UZSN INST INTFW IRC IRETP ***
 END PWAT-PARM4
 PWAT-STATE1
 <PLS > *** Initial conditions at start of simulation
 ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # - # *** CEPS SURS UZS IFWS LZS AGWS LNVS
 END PWAT-STATE1
 END PERLND
IMPLND
GEN-INEO

$<\mathrm{PLS}$ \# -	$\begin{aligned} & ><-------N a m e-------> \\ & \# \end{aligned}$	Unit-systems		Printer		***
		User	t-series	Engl		***
			in out			$\star * *$
1	ROADS /FLAT	1	11	27	0	
14	POND	1	11	27	0	

END GEN-INFO
*** Section IWATER***
ACTIVITY
<PLS > ************* Active Sections *****************************
\# - \# ATMP SNOW IWAT SLD IWG IQAL ***
14 0
END ACTIVITY
PRINT-INFO
<ILS $>$
$\#-$
$\#$
1
END PRINT-INEO
IWAT-PARM1
<PLS > IWATER variable monthly parameter value flags ***
\# - \# CSNO RTOP VRS VNN RTLI ***
1 14
END IWAT-PARM1
IWAT-PARM2

<PLS >	IWATER	input info: Part 2	P**		
$\#-2 * *$	LSUR	SLSUR	NSUR	RETSC	
1		400	0.01	0.1	0.1
14		400	0.01	0.1	0.1

END IWAT-PARM2
IWAT-PARM3
<PLS > IWATER input info: Part 3 ***
\# - \# ***PETMAX PETMIN
1 0

```

END IWAT-PARM3
```

IWAT-STATE1
<PLS > *** Initial conditions at start of simulation
\# - \# *** RETS SURS
1 0 0
14 0 0
END IWAT-STATE1

```

END IMPLND
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{SCHEMATIC} \\
\hline <-Source-> & <--Area--> & <-Targ & t-> & MBLK & *** \\
\hline <Name> \# & <-factor-> & <Name> & \# & Tbl\# & ** \\
\hline Basin 1*** & & & & & \\
\hline IMPLND 1 & 1.47 & RCHRES & 1 & 5 & \\
\hline IMPLND 14 & 0.92 & RCHRES & 1 & 5 & \\
\hline \multicolumn{6}{|l|}{******Routing******} \\
\hline IMPLND 1 & 1.47 & COPY & 1 & 15 & \\
\hline IMPLND 14 & 0.92 & COPY & 1 & 15 & \\
\hline RCHRES 1. & 1. & COPY & 501 & 17 & \\
\hline
\end{tabular}

END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** COPY 501 OUTPUT MEAN \(1.1448 .4 \quad\) DISPLY \(1 \quad\) INPUT TIMSER 1


RCHRES Initial conditions for each HYDR section \# - \# *** VOL Initial value of COIIND Initial value of OUTDGT


END HYDR-INIT END RCHRES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{SPEC-ACTIONS} \\
\hline \multicolumn{7}{|l|}{END SPEC-ACTIONS} \\
\hline \multicolumn{7}{|l|}{FTABLES} \\
\hline FTABLE & 1 & & & & & \\
\hline \multicolumn{7}{|l|}{915} \\
\hline Depth & Area & Volume & Outflow1 & Outflow2 & Velocity & Travel Time*** \\
\hline (ft) & (acres) & (acre-ft) & (cfs) & (cfs) & (ft/sec) & (Minutes) *** \\
\hline 0.000000 & 0.114784 & 0.000000 & 0.000000 & 0.000000 & & \\
\hline 0.111111 & 0.119678 & 0.013026 & 0.000000 & 0.111022 & & \\
\hline 0.222222 & 0.124668 & 0.026600 & 0.000000 & 0.115650 & & \\
\hline 0.333333 & 0.129752 & 0.040735 & 0.000000 & 0.120367 & & \\
\hline 0.444444 & 0.134932 & 0.055440 & 0.000000 & 0.125172 & & \\
\hline 0.555556 & 0.140207 & 0.070725 & 0.000000 & 0.130065 & & \\
\hline 0.666667 & 0.145577 & 0.086602 & 0.000000 & 0.135047 & & \\
\hline 0.777778 & 0.151042 & 0.103081 & 0.000000 & 0.140117 & & \\
\hline 0.888889 & 0.156603 & 0.120172 & 0.000000 & 0.145275 & & \\
\hline 1.000000 & 0.162259 & 0.137887 & 0.000000 & 0.150522 & & \\
\hline 1.111111 & 0.168010 & 0.156235 & 0.000000 & 0.155857 & & \\
\hline 1. 222222 & 0.173856 & 0.175228 & 0.000000 & 0.161281 & & \\
\hline 1.333333 & 0.179798 & 0.194875 & 0.000000 & 0.166793 & & \\
\hline 1.444444 & 0.185835 & 0.215188 & 0.000000 & 0.172393 & & \\
\hline 1. 555556 & 0.191967 & 0.236177 & 0.000000 & 0.178081 & & \\
\hline 1.666667 & 0.198194 & 0.257853 & 0.000000 & 0.183858 & & \\
\hline 1.777778 & 0.204517 & 0.280225 & 0.000000 & 0.189723 & & \\
\hline 1.888889 & 0.210934 & 0.303306 & 0.000000 & 0.195677 & & \\
\hline 2.000000 & 0.217447 & 0.327105 & 0.000000 & 0.201719 & & \\
\hline 2.111111 & 0.224055 & 0.351633 & 0.000000 & 0.207849 & & \\
\hline 2.222222 & 0.230759 & 0.376900 & 0.000000 & 0.214067 & & \\
\hline 2.333333 & 0.237557 & 0.402918 & 0.000000 & 0.220374 & & \\
\hline 2.444444 & 0.244451 & 0.429696 & 0.000000 & 0.226769 & & \\
\hline 2.555556 & 0.251440 & 0.457246 & 0.000000 & 0.233253 & & \\
\hline 2.666667 & 0.258525 & 0.485577 & 0.000000 & 0.239825 & & \\
\hline 2.777778 & 0.265704 & 0.514701 & 0.000000 & 0.246485 & & \\
\hline 2.888889 & 0.272979 & 0.544628 & 0.000000 & 0.253233 & & \\
\hline 3.000000 & 0.280349 & 0.575368 & 0.000000 & 0.260070 & & \\
\hline 3.111111 & 0.287814 & 0.606933 & 0.000000 & 0.266996 & & \\
\hline 3. 222222 & 0.295375 & 0.639332 & 0.000000 & 0.274009 & & \\
\hline 3.333333 & 0.303030 & 0.672577 & 0.000000 & 0.281111 & & \\
\hline 3.444444 & 0.310781 & 0.706678 & 0.000000 & 0.288301 & & \\
\hline 3.555556 & 0.318627 & 0.741645 & 0.000000 & 0.295580 & & \\
\hline 3.666667 & 0.326569 & 0.777489 & 0.000000 & 0.302947 & & \\
\hline 3.777778 & 0.334605 & 0.814221 & 0.000000 & 0.310402 & & \\
\hline 3.888889 & 0.342737 & 0.851851 & 0.000000 & 0.317946 & & \\
\hline 4.000000 & 0.350964 & 0.890390 & 0.000000 & 0.325578 & & \\
\hline 4.111111 & 0.359286 & 0.929848 & 0.587805 & 0.333298 & & \\
\hline 4.222222 & 0.367704 & 0.970237 & 1.636945 & 0.341107 & & \\
\hline 4.333333 & 0.376217 & 1.011566 & 2.882519 & 0.349004 & & \\
\hline 4.444444 & 0.384825 & 1.053846 & 4.103633 & 0.356989 & & \\
\hline 4.555556 & 0.393528 & 1.097087 & 5.097354 & 0.365063 & & \\
\hline 4.666667 & 0.402326 & 1.141302 & 5.754494 & 0.373225 & & \\
\hline 4.777778 & 0.411220 & 1.186499 & 6.249853 & 0.381475 & & \\
\hline 4.888889 & 0.420209 & 1.232689 & 6.681374 & 0.389814 & & \\
\hline 5.000000 & 0.429293 & 1.279884 & 7.086668 & 0.398241 & & \\
\hline 5.111111 & 0.438472 & 1.328093 & 7.470004 & 0.406756 & & \\
\hline 5.222222 & 0.447747 & 1.377327 & 7.834606 & 0.415360 & & \\
\hline 5.333333 & 0.457117 & 1.427597 & 8.182979 & 0.424052 & & \\
\hline 5.444444 & 0.466582 & 1.478914 & 8.517114 & 0.432832 & & \\
\hline 5.555556 & 0.476142 & 1.531287 & 8.838627 & 0.441701 & & \\
\hline 5.666667 & 0.485797 & 1.584729 & 9.148849 & 0.450658 & & \\
\hline 5.777778 & 0.495548 & 1.639248 & 9.448890 & 0.459703 & & \\
\hline 5.888889 & 0.505394 & 1.694856 & 9.739693 & 0.468837 & & \\
\hline 6.000000 & 0.515335 & 1.751563 & 10.02206 & 0.478059 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 6.111111 & 0.525372 & 1.809380 & 10.29669 & 0.487370 \\
\hline 6.222222 & 0.535503 & 1.868317 & 10.56418 & 0.496768 \\
\hline 6.333333 & 0.545730 & 1.928386 & 10.82506 & 0.506256 \\
\hline 6.444444 & 0.556052 & 1.989596 & 11.07981 & 0.515831 \\
\hline 6.555556 & 0.566469 & 2.051958 & 11.32882 & 0.525495 \\
\hline 6.666667 & 0.576982 & 2.115483 & 11.57248 & 0.535247 \\
\hline 6.777778 & 0.587590 & 2.180182 & 11.81111 & 0.545087 \\
\hline 6.888889 & 0.598293 & 2.246064 & 12.04502 & 0.555016 \\
\hline 7.000000 & 0.609091 & 2.313141 & 12.27447 & 0.565033 \\
\hline 7.111111 & 0.619984 & 2.381423 & 12.49971 & 0.575139 \\
\hline 7.222222 & 0.630973 & 2.450921 & 12.72096 & 0.585333 \\
\hline 7.333333 & 0.642057 & 2.521644 & 12.93843 & 0.595615 \\
\hline 7.444444 & 0.653236 & 2.593605 & 13.15230 & 0.605985 \\
\hline 7.555556 & 0.664510 & 2.666813 & 13.36275 & 0.616444 \\
\hline 7.666667 & 0.675880 & 2.741279 & 13.56994 & 0.626991 \\
\hline 7.777778 & 0.687345 & 2.817014 & 13.77401 & 0.637627 \\
\hline 7.888889 & 0.698905 & 2.894028 & 13.97510 & 0.648351 \\
\hline 8.000000 & 0.710560 & 2.972332 & 14.17334 & 0.659163 \\
\hline 8.111111 & 0.722311 & 3.051936 & 14.36884 & 0.670064 \\
\hline 8.222222 & 0.734156 & 3.132850 & 14.56172 & 0.681052 \\
\hline 8.333333 & 0.746097 & 3.215087 & 14.75207 & 0.692130 \\
\hline 8.444444 & 0.758134 & 3.298655 & 14.94001 & 0.703295 \\
\hline 8.555556 & 0.770265 & 3.383566 & 15.12560 & 0.714549 \\
\hline 8.666667 & 0.782492 & 3.469830 & 15.30895 & 0.725891 \\
\hline 8.777778 & 0.794813 & 3.557458 & 15.49013 & 0.737322 \\
\hline 8.888889 & 0.807231 & 3.646461 & 15.66921 & 0.748841 \\
\hline 9.000000 & 0.819743 & 3.736848 & 15.84627 & 0.760448 \\
\hline 9.111111 & 0.832350 & 3.828631 & 16.02137 & 0.772144 \\
\hline 9.222222 & 0.845053 & 3.921820 & 16.19458 & 0.783928 \\
\hline 9.333333 & 0.857851 & 4.016426 & 16.36596 & 0.795800 \\
\hline 9.444444 & 0.870744 & 4.112459 & 16.53556 & 0.807761 \\
\hline 9.555556 & 0.883733 & 4.209930 & 16.70344 & 0.819810 \\
\hline 9.666667 & 0.896817 & 4.308850 & 16.86964 & 0.831947 \\
\hline 9.777778 & 0.909996 & 4.409228 & 17.03423 & 0.844173 \\
\hline 9.888889 & 0.923270 & 4.511076 & 17.19724 & 0.856487 \\
\hline 10.00000 & 0.936639 & 4.614404 & 17.35872 & 0.868889 \\
\hline END FTABI & 1 & & & \\
\hline \multicolumn{5}{|l|}{ND FTABLES} \\
\hline
\end{tabular}

EXT SOURCES


END EXT SOURCES
EXT TARGETS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Volume- & \multirow[t]{2}{*}{<-Grp>} & \multicolumn{5}{|l|}{<-Member-><--Mult-->Tran} & \multicolumn{2}{|l|}{<-Volume->} & <Member> & Tsys & Tgap & Amd ** \\
\hline <Name> \# & & <Name> & & & tor & ->strg & <Nam & \# & <Name> & tem & strg & strg*** \\
\hline RCHRES 1 & HYDR & RO & 1 & 1 & & 1 & WDM & 1000 & FLOW & ENGL & & REPL \\
\hline RCHRES 1 & HYDR & 0 & 1 & 1 & & 1 & WDM & 1001 & FLOW & ENGL & & REPL \\
\hline RCHRES & HYDR & 0 & 2 & 1 & & 1 & WDM & 1002 & FLOW & ENGL & & REPL \\
\hline RCHRES 1 & HYDR & STAGE & 1 & 1 & & 1 & WDM & 1003 & STAG & ENGL & & REPL \\
\hline COPY & OUTPUT & MEAN & 1 & 1 & 48. & & WDM & 701 & ELOW & ENGL & & REPL \\
\hline COPY 501 & OUTPUT & MEAN & & 1 & & & WDM & 801 & ELOW & ENGL & & REP \\
\hline
\end{tabular}

END EXT TARGETS
MASS-LINK

```

 MASS-LINK 17
 RCHRES OFLOW OVOL 1
END MASS-LINK 17
END MASS-IINK
END RUN

```

\section*{Predeveloped HSPF Message File}

Mitigated HSPF Message File

\section*{Disclaimer}

\section*{Legal Notice}

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc.
6200 Capitol Blvd. Ste F
Olympia, WA. 98501
Toll Free 1(866)943-0304
Local (360)943-0304
www.clearcreeksolutions.com```

