HEATH & ASSOCIATES, INC

Transportation and Civil Engineering

OAK SPRINGS TRAFFIC IMPACT ANALYSIS

THURSTON COUNTY, WA

Prepared for: Steve Hatton Hatton Godat Pantier 1840 Barnes Blvd SW Tumwater, WA 98512

November 2013

2214 Tacoma Road Puyallup WA 98371 (253) 770 1401 Fax (253) 770 1473 heathtraffic.com

OAK SPRINGS TRAFFIC IMPACT ANALYSIS

TABLE OF CONTENTS

I.	Introduction	.3
II.	Project Description	3
	Existing Conditions	
	Future Traffic Demand.	
V.	Conclusions and Mitigation	17

Appendix

LIST OF TABLES

1.	Existing Level of Service	
2.	Project Trip Generation	
	Future 2016 Level of Service	

LIST OF FIGURES

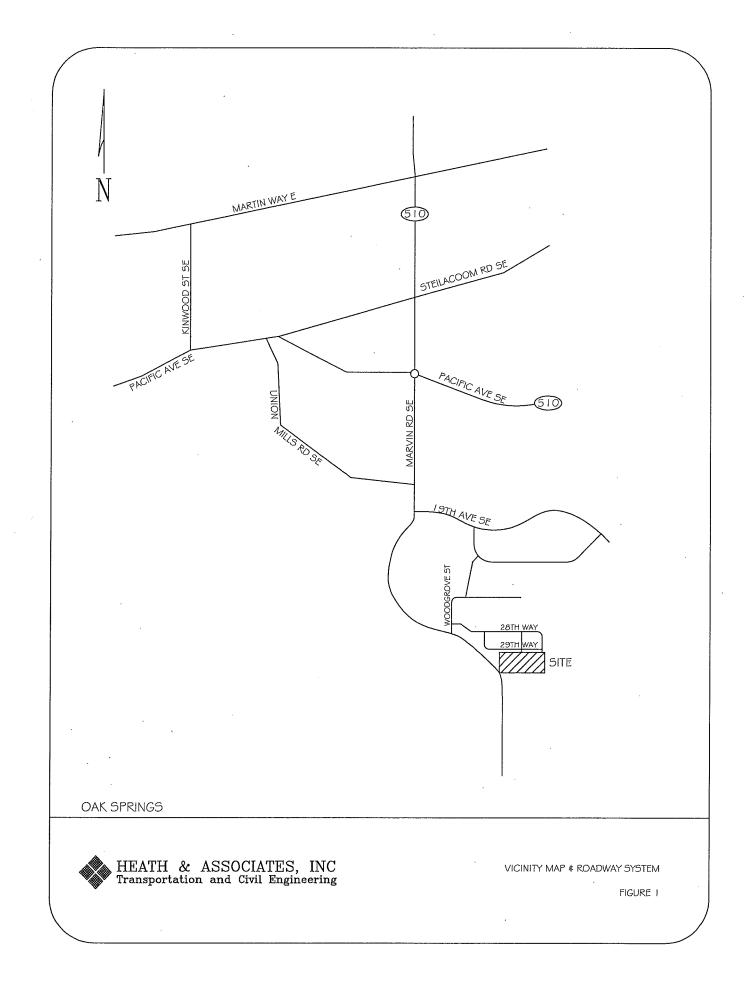
1.	Vicinity Map and Roadway System	4
	Site Plan	
	Existing PM Peak Hour Volumes	
	Trip Distribution & Assignment	
	Pipeline Volumes	
6.	2016 PM Peak Hour Volumes Without Project	14
	2016 PM Peak Volumes With Project	

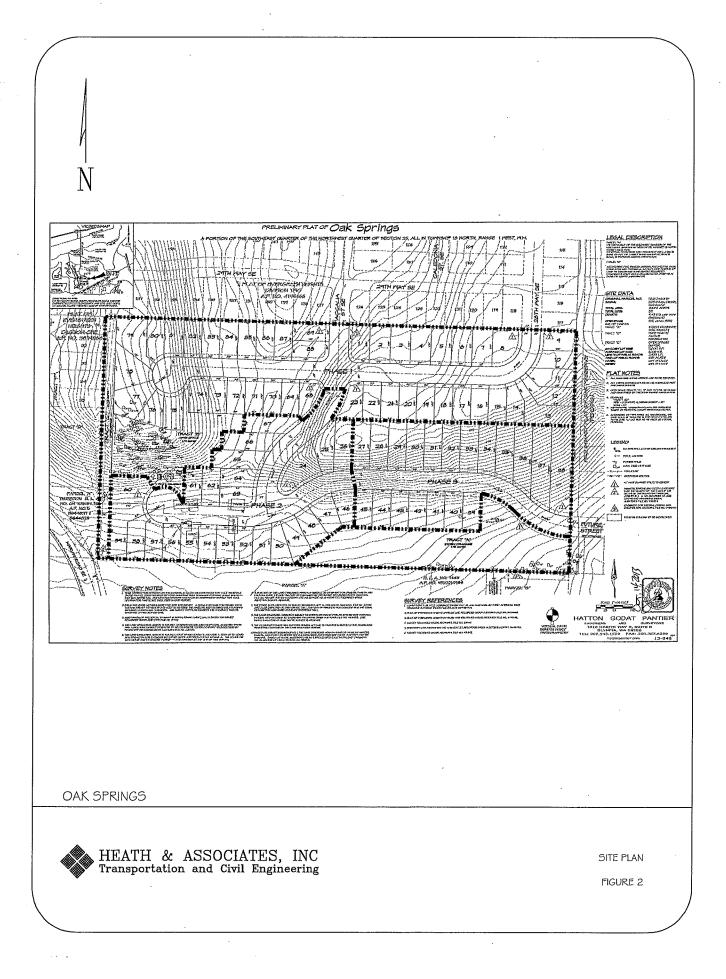
OAK SPRINGS TRAFFIC IMPACT ANALYSIS

I. INTRODUCTION

The main goals of this study focus on the assessment of existing roadway conditions and forecasts of newly generated project traffic. The first task includes the collection of general roadway information, road improvement information, entering sight distance data, and current delays. Forecasts of future traffic and dispersion patterns on the street system are then determined using established trip generation and distribution techniques. Next, future traffic delays are calculated and significant impacts, if any, are identified. As a final step, appropriate conclusions and mitigation measures are defined if needed.

II. PROJECT DESCRIPTION


This report summarizes anticipated traffic impacts related to the proposed Oak Springs project. The proposed project is a residential subdivision consisting of 89 new units of single family detached housing in unincorporated Thurston County. The project is located on the east side of Marvin Road SE, just south of the Evergreen Heights development. Project access will be via internal road connections to 29th Way SE, which routes onto Woodgrove Drive SE for access onto Marvin Road SE.


Most development surrounding the site consists of residential land uses. Based on the management projections, full buildout of this project may be anticipated roughly in 2016. For traffic analysis purposes, 2016 was selected as the horizon analysis year. Figure 1 shows the general site location with the surrounding street network and primary arterials. A site plan illustrating the overall configuration and access locations is given in Figure 2.

III. EXISTING CONDITIONS

A. Existing Street System

Roadways serving the proposed site consist of multi-lane arterials and two-lane collector roads which vary in width, terrain, and posted speeds. As indicated by their specific arterial designations, these roadways also vary in their overall function as part of the general network. The key streets near the site are listed and described on page 6.

Woodgrove Street is a north-south local road with a posted speed limit of 25 mph. Via connections to 29th Way to Woodgrove, this road provides the access point for the project onto the arterial network. Total roadway width varies from 24 to 27 feet, with a sidewalk on the east side of the road and a short section of curbing. Other shoulders are grass/gravel.

19th Avenue SE is an east-west collector that lies to the north of the project site. Total roadway width is roughly 37 feet with curbed shoulders and sidewalks. The speed limit is posted at 25 mph.

Marvin Road SE is a multi-lane, north-south major arterial that lies to the west and south of the project. Turn lanes are provided at the major intersections. A two-way left turn lane is present near the site. The posted speed limit is 35 mph in the project vicinity. Shoulders in this section are comprised of curb, gutter, and sidewalk or are paved. Grades are generally level. Bike lanes are provided along portions of the road.

Union Mills Road SE is a two-lane east-west arterial that lies to the northwest of the project. The speed limit is 35 mph, and surfacing is composed of asphalt. Shoulders are comprised of grass and gravel. Grades are rolling with slopes of 0 to 5 percent.

Pacific Avenue SE is a two-lane east-west arterial that lies to the north of the project. Surfacing is asphalt concrete with 12 foot lanes. Shoulders are around 4 to 6 feet in width with curb, gutter, and sidewalks in areas. The posted speed limit is 45 to 50 mph. Grades are generally level.

B. Roadway Improvements

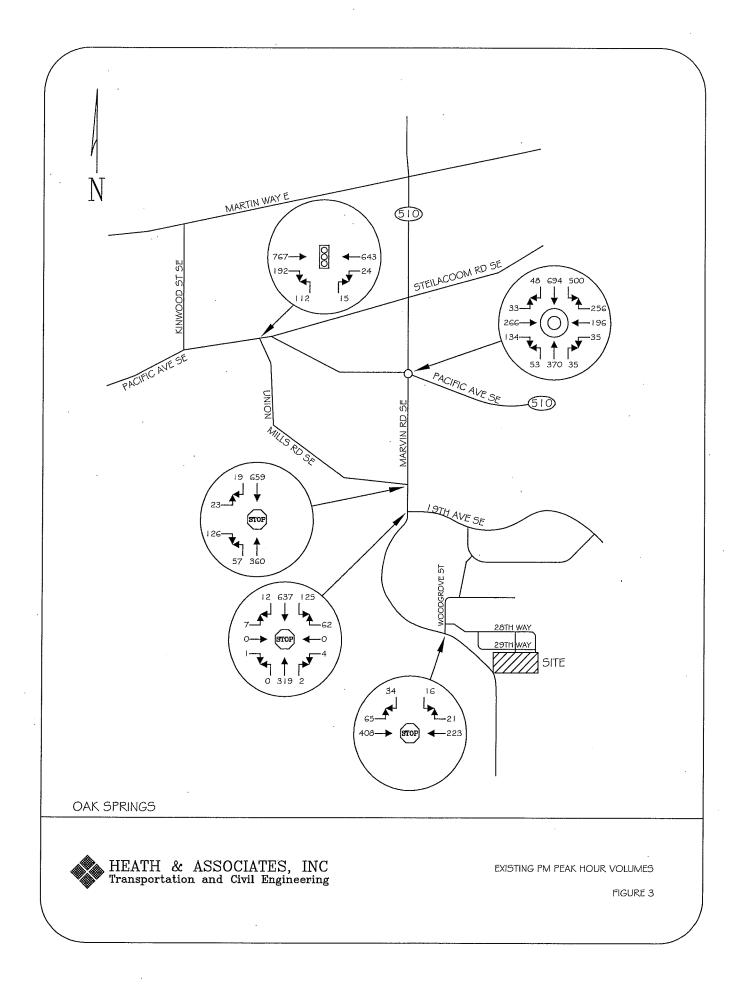
A review of the draft 2014 to 2019 Thurston County Six Year Transportation Improvement Program shows several projects currently planned in the vicinity of the project.

Steilacoom Road, from Marvin Road to Dutterow Road: The roadway is to be widened and reconstructed, adding channelization, bike lanes, sidewalks, and other improvements. Funding is \$3 million.

Steilacoom Road, from Pacific Avenue to Marvin Road: The roadway is to be reconstructed possibly with new alignment, also with a turn lane to the school, bike lanes, sidewalks, and other improvements. Funding is \$3,272,000.

Kinwood Street, from Martin Way to Pacific Avenue: The roadway is to be replaced with sidewalks and bike lanes added. \$2,200,000 in funding is identified.

C. Peak Hour Volumes


Field data for this study was collected in October of 2013. Traffic counts were taken during the evening peak period between the hours of 4 PM and 6 PM. This specific peak period was targeted for analysis purposes since it generally represents a worst case scenario for residential developments with respect to traffic conditions. This is primarily due to the common 8 AM to 5 PM work schedule and the greater number of recreation and shopping trips associated with the late afternoon period. Residents typically return home after work at approximately the same time of day, between 5 PM and 6 PM, which translates to a natural peak in intersection traffic loads. Figure 3 on the following page shows the evening peak hour counts taken at the primary intersections identified in the scoping process and expected to be most heavily influenced by project traffic.

D. Level of Service Results

Existing peak hour delays were determined through the use of the 2010 Highway Capacity Manual. Capacity analysis is used to determine level of service (LOS) which is an established measure of congestion for transportation facilities. LOS is defined for a variety of facilities including intersections, freeways, arterials, etc. A complete definition of level of service and related criteria can be found in the HCM. The methodology for determining the LOS at signalized intersections strives to determine the volume to capacity (v/c) ratios for the various intersection movements as well as the average control delay for those movements. *Delay* is generally used to measure the degree of driver discomfort, frustration, fuel consumption, and lost time. *Control delay*, in particular, includes movements at slower speeds and stops on intersection approaches as vehicles move up in queue position or slow down upstream of an intersection LOS. These include the type of signal operation provided, the signal phasing pattern, and the specific allocation of green time.

The methodology for determining the LOS at unsignalized intersections strives to determine the potential capacities for the various vehicle movements and ultimately determines the average total delay for each movement. *Potential Capacity* represents the number of additional vehicles that could effectively utilize a particular movement, which is essentially the equivalent of the difference between the movement capacity and the existing movement volume. *Total delay* is described as the elapsed time from when a vehicle stops at the end of a queue until the vehicle departs from the stop line. *Average total delay* is simply the mean total delay over the entire stream. A number of factors influence potential capacity and total delay including the availability/usefulness of gaps.

The range for intersection level of service is LOS A to LOS F with the former indicating the best operating conditions with low control delays and the latter indicating the worst conditions with heavy control delays. Detailed descriptions of intersection LOS are given in the 2010 Highway Capacity Manual. LOS results for the key intersections can be

found in Table 1. Level of service calculations were made through the use of the automated intersection analysis program Synchro 8.

TABLE 1

Existing Level of Service Delays given in seconds per vehicle

Intersection	Control	<u>Geometry</u>	LOS	<u>Delay</u>
Pacific/Union Mills	Signal	Eastbound	A	6.3
		Westbound	A	3.6
·		Northbound	В	17.1
		Overall	Α	6.0
Marvin/Pacific	Round-	Eastbound	С	19.7
	About	Westbound	А	8.4
		Northbound	В	11.8
		Southbound	С	17.8
		Overall	С	15.3
Marvin/Union Mills	Stop	Eastbound	С	23.5
		Northbound LT	А	9.4
		Overall	Α	3.2
Marvin/19th Avenue	Stop	Eastbound	ΕÌ	40.0
		Westbound	В	12.6
		Northbound LT	А	0.0
		Southbound LT	А	8.3
		Overall	Α	1.9
Marvin/Woodgrove	Stop	Eastbound LT	. A	7.9
		Southbound	В	10.9
		Overall	Α	1.4

The results of Table 1 show that existing delays are mild to moderate in the LOS A to LOS E range. The LOS E results are for a private driveway approach onto Marvin Road SE.

E. Non-Motorist Traffic

Pedestrian and bicycle trips generated by the proposed housing project are expected to be generally mild during peak vehicular traffic periods (specifically 4 PM to 6 PM). During site visits, little pedestrian traffic was noted. Sidewalks are provided on Woodgrove Street SE, 28th Way SE, and 29th Way SE for neighborhood pedestrian traffic.

F. Public Transit

The Intercity Transit regional bus schedule was reviewed to determine whether transit service is provided in the project vicinity. According to published schedules, Intercity Transit Route 67 serves the project vicinity along Pacific Avenue and Marvin Road SE. Route 67 provides service from the Lacey Transit Center to the Tri-Lake area from roughly 6 AM to 7 PM. Refer to the Intercity Transit schedule for more information.

F. Sight Distance at Access Driveways

The intersections in this study have good sight distance and were not found to have significant geometric deficiencies. Units will have access via internal roads onto 29th Way SE, then the existing connections subsequently onto 28th Way SE, then Woodgrove Street SE, then onto Marvin Road SE. These existing connections meet AASHTO standards requiring a minimum *entering sight distance* of 280 feet for a 25 mph design speed.

IV. FUTURE TRAFFIC DEMAND

A. Project Trip Generation

Trip generation can be used to determine the magnitude of project impacts on the surrounding street system. Data presented in this report was taken from the Institute of Transportation Engineer's publication *Trip Generation*, 9th Edition. The designated land use for this project is defined as Single Family Detached Housing (LUC 210). Fitted equations were used with dwelling units as the independent variable. Table 2 shows the trip generation values for the project. Included are the average weekday traffic volumes, AM peak hour volumes, and PM peak hour volumes.

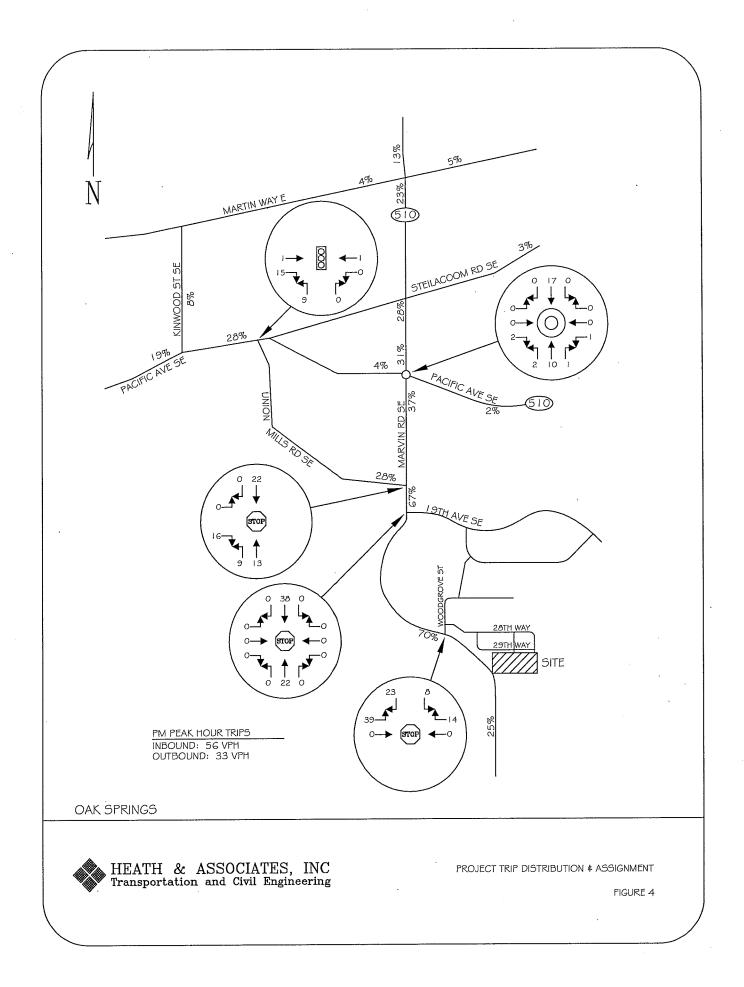
TABLE 2

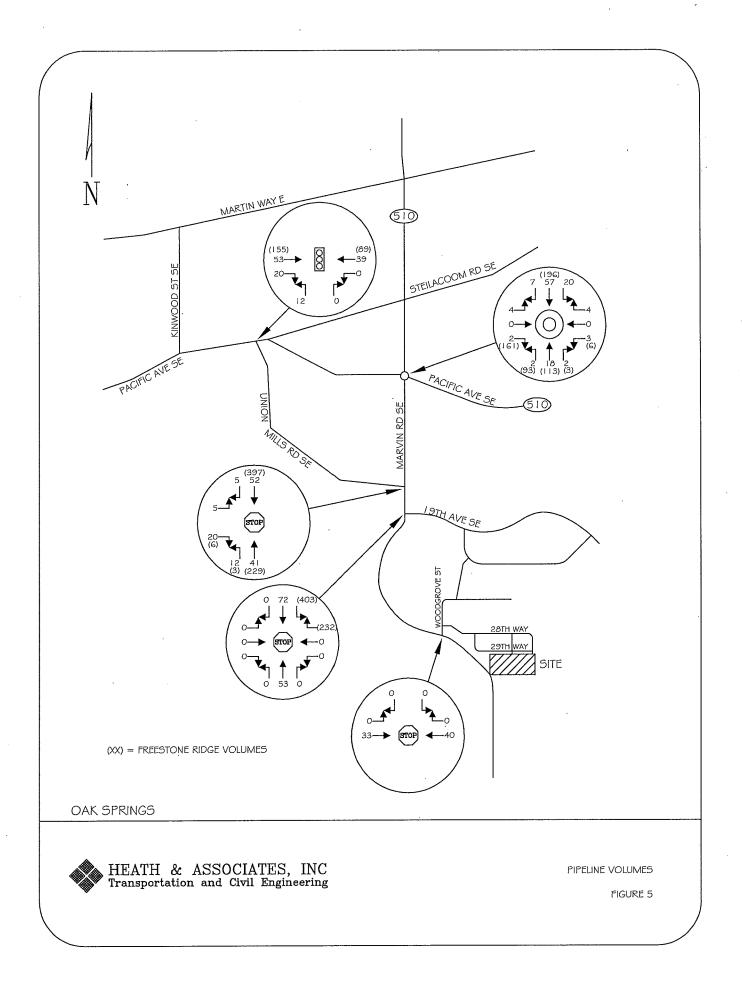
Project Trip Generation 89 Single Family Units

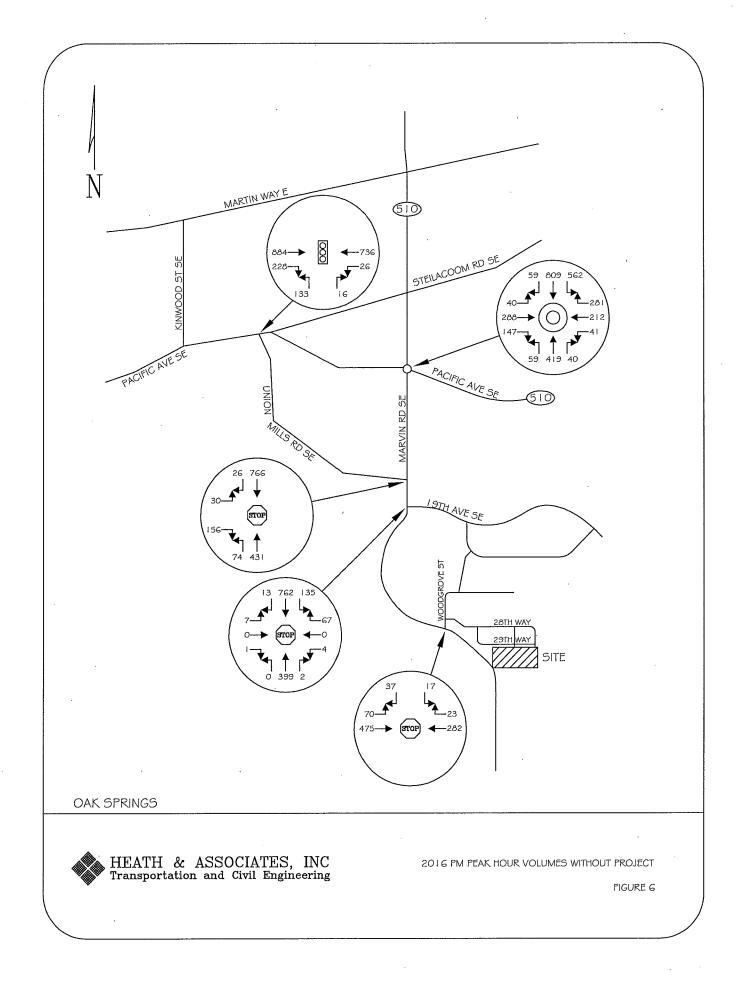
<u>Time Period</u>	<u>Volume</u>
AWDT	847 vpd
AM Peak Inbound	17 vph
AM Peak Outbound	50 vph
AM Peak Total	67 vph
PM Peak Inbound	56 vph
PM Peak Outbound	33 vph
PM Peak Total	89 vph

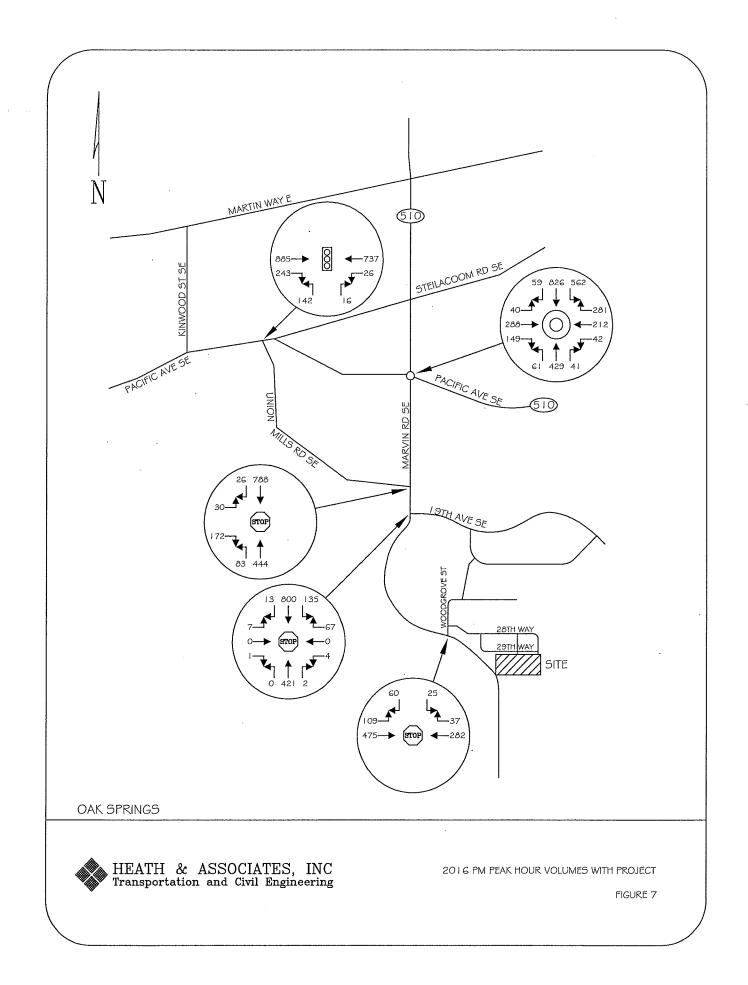
As the table shows, more traffic is expected during the PM peak hour compared to the AM peak. This is typical of residential communities with work based trips being combined with personal and recreation trips in the evenings. The inbound/outbound split during the critical PM peak hour is 63 percent entering and 37 percent exiting.

B. Trip Assignment and Distribution


The destination and origination of future project traffic primarily influences how the driveways and nearby intersections will function as they distribute traffic to and from outlying areas. Trips generated by the project are expected to generally follow the distribution patterns shown in Figure 4 for primary trips during the PM peak hour. These percentages are based on TMODEL 2 output provided by Thurston County for Traffic Analysis Zone (TAZ) 76. The figure also shows the intersections of interest as identified in the scoping process.


C. Peak Hour Volumes


The owners of the project anticipate a completion and occupancy date for the project around 2016, therefore 2016 was selected as the horizon analysis year. Future 2016 traffic volumes without the project were derived by applying a 2.7 percent annual growth rate to the volumes of Figure 5. This growth rate was chosen based on data in the WSDOT Annual Traffic Report for SR-510 at Pacific Avenue. In addition, pipeline volumes from projects identified by Thurston County were compiled. McAllister Meadows pipeline volumes were also added. These pipeline volumes at the key intersections are shown in Figure 5. Freestone Ridge pipeline volumes are separated and shown in parenthesis, due to their huge effect on future volumes. Figure 6 shows future PM peak hour volumes without project traffic. Figure 7 gives future 2016 PM peak hour volumes with Oak Springs traffic included.


D. Level of Service

A level of service analysis was made of the future peak hour volumes with and without project generated trips added to the primary intersections and entrance nodes. A summary of the LOS results is shown in Table 3 on page 16. It should be noted that Freestone Ridge volumes were not incorporated into the results of Table 3. The addition of Freestone Ridge would create very heavy delays at the key intersections along the Marvin Road corridor, with a further horizon year and more extensive mitigation strategies likely associated with the project.

TABLE 3

Future 2016 Level of Service Delays given in seconds per vehicle

			Withou	t Project	With	Project
<u>Intersection</u>	<u>Control</u>	<u>Geometry</u>	<u>LOS</u> .	<u>Delay</u>	<u>LOS</u>	<u>Delay</u>
Pacific/Union	Signal	Eastbound	Α	7.0	А	7.2
		Westbound	Α	3.8	А	3.9
		Northbound	В	18.7	В	18.9
		Overall	Α	6.6	Α	6.9
Marvin/Pacific	Round-	Eastbound	D	29.8	D	31.0
	About	Westbound	Α.	9.5	А	9.7
		Northbound	В	14.6	С	15.0
		Southbound	D	28.1	D	29.5
		Overall	С	22.7	С	23.6
Marvin/Union Mills	Stop	Eastbound	Е	45.4	F	57.9
		Northbound LT	В	10.1	В	10.3
		Overall	Α	6.2	Α	8.1
Marvin/19th Ave	Stop	Eastbound	F	61.3	F	68.9
	-	Westbound	В	14.5	С	15.1
		Northbound LT	A	0.0	А	0.0
		Southbound LT	Α	8.6	А	8.7
		Overall	Α	1.9	Α	1.9
Marvin/Woodgrove	Stop	Eastbound LT	Α	8.1	Α	8.3
2	•	Southbound	B	11.6	В	12.4
		Overall	Α	1.3	Α	2.0

As shown in Table 3, future traffic conditions are expected to range from LOS A to LOS F for intersection approaches, while intersection overall delays are in the LOS A to LOS C range. The minimum required threshold is LOS D within the urban growth area (UGA).

Marvin Road SE & Union Mills Road SE shows LOS F for the eastbound approach with project traffic included. The improvement of separating the eastbound left and right turn movements would reduce eastbound delays to LOS D. The proximity of the railroad to the south may limit widening options however. It should be noted that there is median width on the north leg for a two-step left turn maneuver for the eastbound to northbound left turn. However, pavement striping on the north leg discourages this maneuver. As a T-intersection, there should be minor safety drawback in making this maneuver. If two-step left turns are assumed, eastbound delays would be at LOS D. Regardless, overall delays at this intersection would be at LOS A.

Marvin Road SE & 19th Avenue SE is expected to have overall delays of LOS A for the intersection with LOS F delays for the eastbound approach. The total traffic eastbound is estimated at 8 vehicles during the PM peak hour indicating very little traffic affected.

The eastbound leg of the intersection is a private entrance that is gated for security purposes and serves a senior housing community, which is a very low generator of traffic.

V. CONCLUSIONS AND MITIGATION

The Oak Springs project will add 89 single family units to unincorporated Thurston County. On a daily basis, roughly 847 total project trip movements into and out of the site would be expected. Of this total daily traffic, 89 movements are expected during the PM peak hour, with 67 movements expected during the AM peak hour.

Existing delays are outlined in Table 1. Existing delays are mild to moderate in the LOS A to LOS E range. Currently PM peak hour volumes along Marvin Road SE and Pacific Avenue SE are heavy. Pedestrian traffic was found to have minimal impact on vehicular traffic. The availability of pedestrian facilities in the area helps alleviate potential impacts in the future.

Future traffic created by the project would be expected to increase intersection delays for some approaches. Level of Service results for future conditions were given in Table 3. As shown overall delays will be in the LOS A to LOS F range, with highest delays noted for the eastbound approach of Union Mills Road SE at Marvin Road SE and the eastbound private drive approach at Marvin Road SE & 19th Avenue SE.

Potential mitigation for the Oak Springs project are as follows:

If required by Thurston County, provide pro-rata contribution towards possible future improvements at the Marvin Road SE & Union Mills Road SE intersection. Separating the eastbound left and right turn movements would reduce delays, however proximity to the railroad may limit options. Restriping to allow two-step left turns would also reduce eastbound delays to LOS D. Oak Springs is expected to add approximately 60 PM peak hour trips to this intersection.

If required by Thurston County, provide pro-rata contribution towards future improvements at the Marvin Road SE & 19th Avenue SE intersection. It should be noted again that the approach with high LOS is a private driveway access for a senior housing development with only 8 PM peak eastbound trips, and mitigation is therefore not recommended.

OAK SPRINGS TRAFFIC IMPACT ANALYSIS

APPENDIX

LEVEL OF SERVICE

The following are excerpts from the 2010 Highway Capacity Manual - Transportation Research Board Special Report 209.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. Level of service (LOS) is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience.

Six LOS are defined for each type of facility that has analysis procedures available. Letters designate each level, from A to F, with LOS A representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions and the driver's perception of those conditions.

Level-of-Service definitions

The following definitions generally define the various levels of service for arterials.

Level of service A represents primarily free-flow operations at average travel speeds, usually about 90 percent of the free-flow speed for the arterial classification. Vehicles are seldom impeded in their ability to maneuver in the traffic stream. Delay at signalized intersections is minimal.

Level of service B represents reasonably unimpeded operations at average travel speeds, usually about 70 percent of the free-flow speed for the arterial classification. The ability to maneuver in the traffic stream is only slightly restricted and delays are not bothersome.

Level of service C represents stable operations; however, ability to maneuver and change lanes in midblock locations may be more restricted than in LOS B, and longer queues, adverse signal coordination, or both may contribute to lower average travel speeds of about 50 percent of the average free-flow speed for the arterial classification.

Level of service D borders on a range in which small increases in flow may cause substantial increases in approach delay and hence decreases in arterial speed. LOS D may be due to adverse signal progression, inappropriate signal timing, high volumes, or some combination of these. Average travel speeds are about 40 percent of free-flow speed.

Level of service E is characterized by significant delays and average travel speeds of onethird the free-flow speed or less. Such operations are caused by some combination of adverse progression, high signal density, high volumes, extensive delays at critical intersections, and inappropriate signal timing.

19

Level of service F characterizes arterial flow at extremely low speeds, from less than one-third to one-quarter of the free-flow speed. Intersection congestion is likely at critical signalized locations, with long delays and extensive queuing.

These definitions are general and conceptual in nature, and they apply primarily to uninterrupted flow. Levels of service for interrupted flow facilities vary widely in terms of both the user's perception of service quality and the operational variables used to describe them.

For each type of facility, levels of service are defined based on one or more operational parameters that best describe operating quality for the subject facility type. While the concept of level of service attempts to address a wide range of operating conditions, limitations on data collection and availability make it impractical to treat the full range of operational parameters for every type of facility. The parameters selected to define levels of service for each facility type are called "measures of effectiveness" or "MOE's", and represent available measures that best describe the quality of operation on the subject facility type.

Each level of service represents a range of conditions, as defined by a range in the parameters given. Thus, a level of service is not a discrete condition, but rather a range of conditions for which boundaries are established.

The following tables describe levels of service for signalized and unsignalized intersections. Level of service for signalized intersections is defined in terms of <u>average control delay</u>. Delay is a measure of driver discomfort, frustration, fuel consumption and lost travel time, as well as time from movements at slower speeds and stops on intersection approaches as vehicles move up in queue position or slow down upstream of an intersection. Level of service for unsignalized intersections is determined by the computed or measured control delay and is determined for each minor movement.

Signalized Intersections - Level of Service

	Control Delay per
Level of Service	Vehicle (sec)
А	≤10
В	>10 and ≤ 20
С	>20 and ≤ 35
D	>35 and ≤ 55
E	> 55 and ≤ 80
F	> 80

Unsignalized Intersections - Level of Service

	Average Total Delay
Level of Service	per Vehicle (sec)
А	≤10
В	>10 and ≤ 15
С	>15 and ≤ 25
D	$>$ 25 and \leq 35
E	$>$ 35 and \leq 50
F	> 50

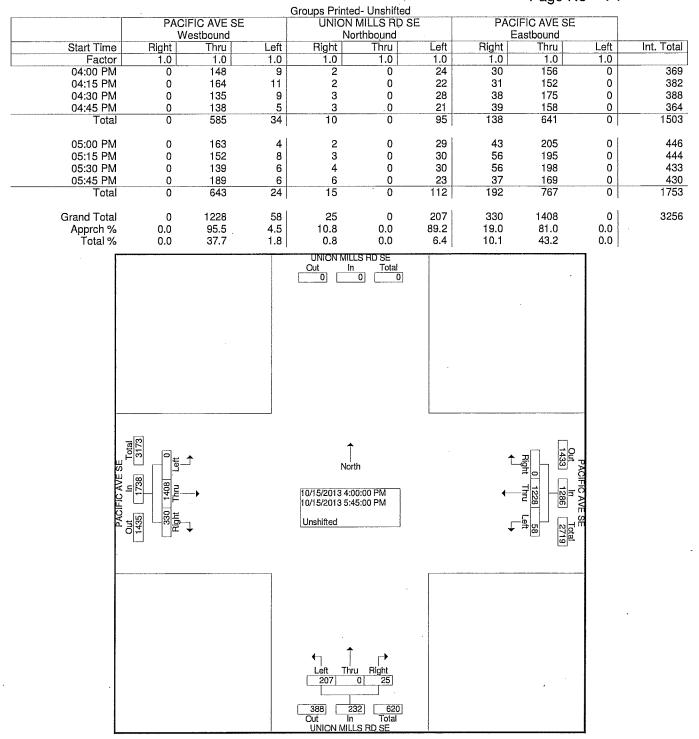
As described in the 2010 Highway Capacity Manual, level of service breakpoints for allway stop controlled (AWSC) intersections are somewhat different than the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from distinct kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an AWSC intersection. Thus a higher level of control delay is acceptable at a signalized intersection for the same level of service.

AWSC Intersections - Level of Service

	Average Total Delay
Level of Service	per Vehicle (sec)
А	≤10
B	>10 and ≤15
С	>15 and ≤ 25
D	$>$ 25 and \leq 35
Е	$>$ 35 and \leq 50
F	> 50

Detailed Average Rate Trip Calculations For 89 Dwelling Units of Single Family Detached Housing(210) - [R]

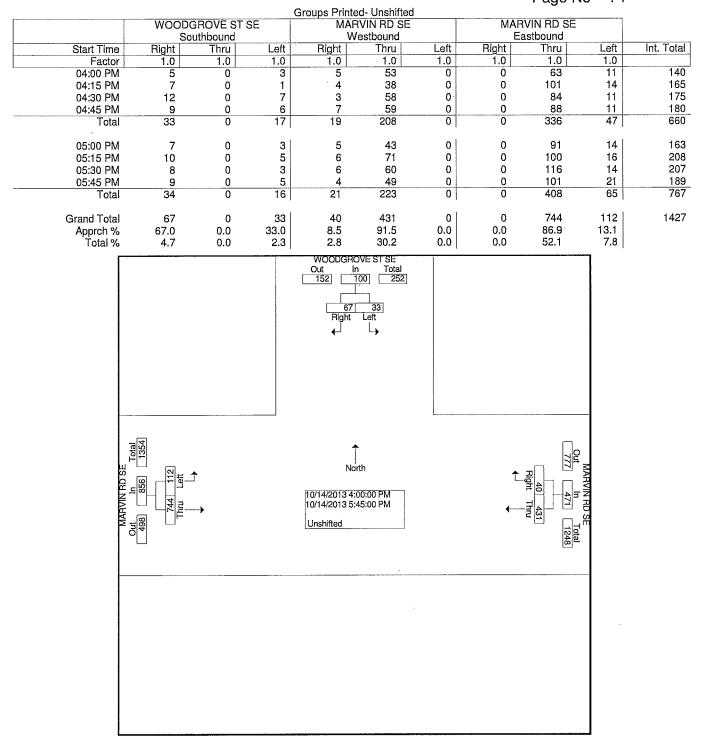
Project: Phase: Open Date: Analysis Date:


Description:

	Average Rate	Standard Deviation	-	Driveway Volume
Avg. Weekday 2-Way Volume	9.52	3.70	1.00	847
7-9 AM Peak Hour Enter	0.19	0.00	1.00	17
7-9 AM Peak Hour Exit	0.56	0.00	1.00	50
7-9 AM Peak Hour Total	0.75	0.90	1.00	67
4-6 PM Peak Hour Enter	0.63	0.00	1.00	56
4-6 PM Peak Hour Exit	0.37	0.00	1.00	33
4-6 PM Peak Hour Total	1.00	1.05	1.00	89
AM Pk Hr, Generator, Enter	0.20	0:00	1.00	18
AM Pk Hr, Generator, Exit	0.57	0.00	1.00	51
AM Pk Hr, Generator, Total	0.77	0.91	1.00	69
PM Pk Hr, Generator, Enter	0.65	0.00	1.00	58
PM Pk Hr, Generator, Exit	0.37	0.00	· 1.00	33
PM Pk Hr, Generator, Total	1.02	1.05	1.00	91
Saturday 2-Way Volume	9.91	3.72	1.00	882
Saturday Peak Hour Enter	0.50	0.00	1.00	45
Saturday Peak Hour Exit	0.43	0.00	1.00	38
Saturday Peak Hour Total	0.93	0.99	1.00	83
Sunday 2-Way Volume	8.62	3.36	1.00	767
Sunday Peak Hour Enter	0.46	0.00	1.00	41
Sunday Peak Hour Exit	0.40	0.00	1.00	36
Sunday Peak Hour Total	0.86	0.95	1.00	77

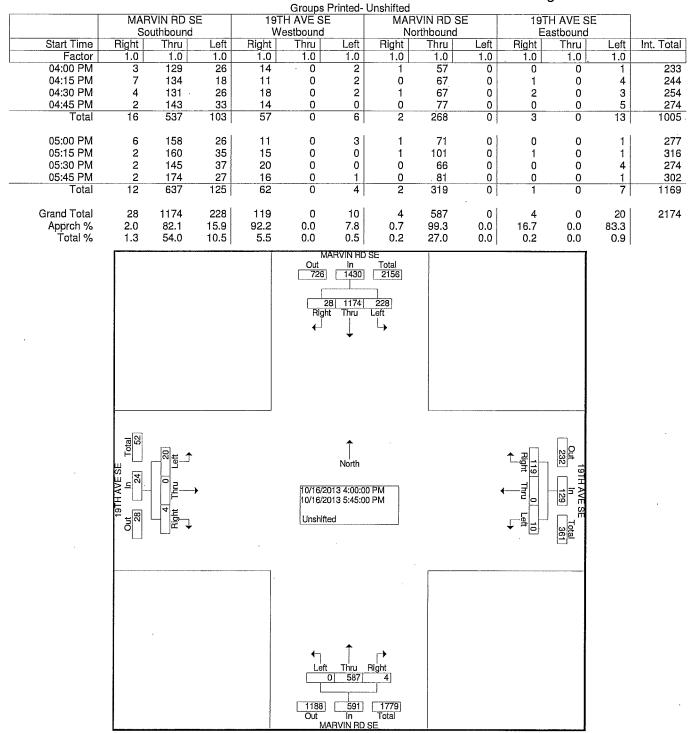
Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation Manual, 9th Edition, 2012

TRIP GENERATION 2013, TRAFFICWARE, LLC


File Name : 3415d Site Code : 00003415 Start Date : 10/15/2013 Page No : 1

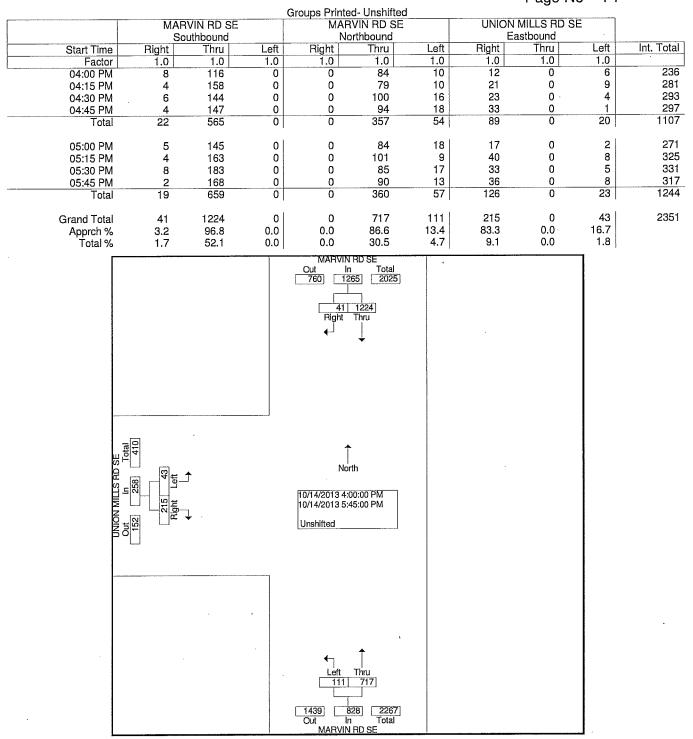
File Name : 3415d Site Code : 00003415 Start Date : 10/15/2013 Page No : 2

			AVE SE		UN	IION MIL Northb	LS RD SE	E	F	PACIFIC	OAVE SE		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour From 0 Intersection		05:45 F	M - Peak 1	of 1	L		I	, , ,			I		
Volume Percent	0.0	643 96.4	24 3.6	667	15 11.8	0 0.0	112 88.2	127	192 20.0	767 80.0	0 0.0	959	1753
05:00 Volume Peak Factor	0.0	163	4	167	2	0	29	31	43	205	0	248	446 0.983
High Int. Volume	05:45 PM	189	c	195	05:30 PM 4	0	30	34	05:30 PM 56	198	0	254	0.000
Peak Factor	0	109	6	0.855	4	0	30	0.934	56	190	0	0.944	
						ON MILLS							
					Out 0	ln 0	Total						
								L					
	Total 1714					↑		,					
	1 1 1	E -				North				↑_ Right	Out 782		
	PACIFIC AVE SE ut In -	767 hru			10/15/	2013 5:00:0 2013 5:45:0	0 PM		•	⊣⊟			
		92 Jht T			10/15/3 Unshit		0 PM				0 AVE S		
	PAC Out 755		+		Unani					↓ eft 24	E Total 1449		
					€┐	Ť	,_▶						
					Le	t Thru 12 0	Right						
					216	127							
					Out	In ON MILLS	Total						


File Name	: 3415b
Site Code	: 00003415
Start Date	: 10/14/2013
Page No	:1

File Name : 3415b Site Code : 00003415 Start Date : 10/14/2013 Page No : 2

,	WC	DODGR South	OVE ST 8	SE	MARVIN RD SE Westbound				MARVII Easti	N RD SE			
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour From 0 Intersection Volume Percent 05:15 Volume Peak Factor High Int. Volume Peak Factor	4:00 PM to 05:00 PM 34 68.0 10 05:15 PM 10	05:45 P 0.0 0.0 0	M - Peak 16 32.0 5 5	1 of 1 50 . 15 . 15 0.833	21 8.6 6 05:15 PM 6	223 91.4 71 1 71	0 0.0 0	244 77 77 0.792	0 0.0 0 05:30 PN 0	408 86.3 100 / 116	65 13.7 16 14	473 116 130 0.910	767 208 0.922
					Out	6 50 34	Total						
	. MARVIN RD SE Out In Total 257 473 730	Thru Left	_ ↑ _→		10/14	North 1/2013 5:00 1/2013 5:45	00 PM			Right Thru	Out In Total 424 244 668		


File Name : 3415e Site Code : 00003415 Start Date : 10/16/2013 Page No : 1

File Name : 3415e Site Code : 00003415 Start Date : 10/16/2013 Page No : 2

			N RD SI Ibound	E			AVE SE bound				N RD S bound	2			AVE SE bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	om 04:0	0 PM to	05:45 F		ak 1 of 1		l.	- I Olui				1014.	I				, otal
Volume	12	637	125	774	62	0	4	66	2		· 0	321	1	0	7	8	1169
Percent 05:15	1.6	82.3	16.1	107	93.9	0.0	6.1		0.6	99.4	0.0	400	12.5	0.0	87.5		010
Volume Peak Factor	2	160	35	197	15	0	0	15	1	101	0	102	1	0	1	2	316 0.925
High Int.	05:45	РМ			05:30	≥M			05:15	РМ			05:30 1	PM			0.925
Volume Peak Factor	2	174	27	203 0.953	20	0	0	20 0.825	1	101	0	102 0.787	0	0	4	4 0.500	
								MARVIN F	DSE		T						
							Out 388	ln 3 77	Tota 116	al 32							
							[12 63	7 125								
							Rig ↓	ht Thru	Left								
							•	*	·								
]											
		20a						*									
1		E Total 20	Left	_ 1				North					€Right	127	Out		
		19TH AVE SE In 2 8	02	`			10/16/	2013 5:00	00 PM	7					9TH A		
		9TH7		,			10/16/	2013 5:45					F	8	AVE SE		
		11 12		, T			Unshi	fted						193			
							-							ω			
					······												
															Ĺ		
									Right								
							L[0 319	2								
							642 Out	I] 32 In MARVIN F	Tota								

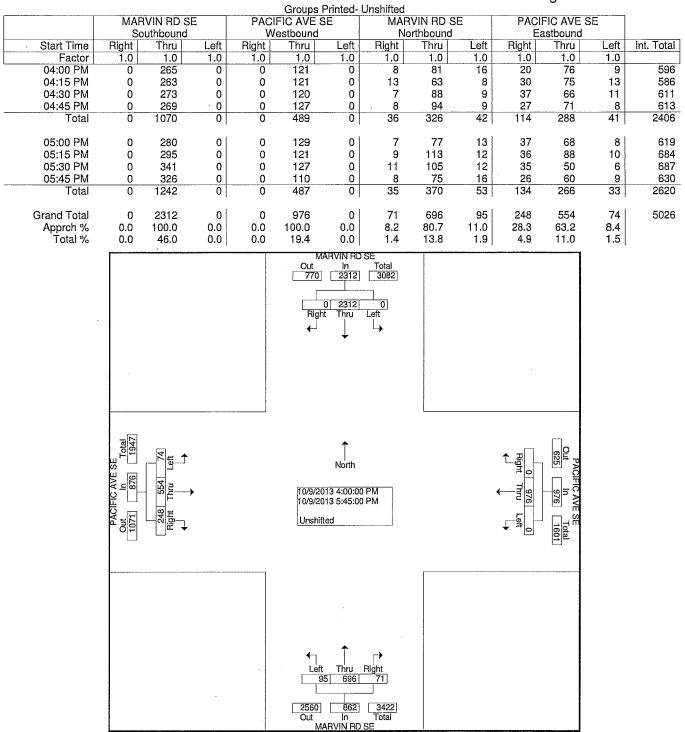
File Name	: 3415c
Site Code	: 00003415
Start Date	: 10/14/2013
Page No	:1

29

.

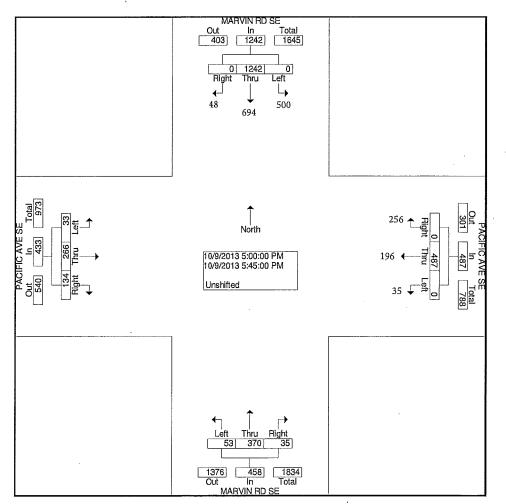
File Name : 3415c Site Code : 00003415 Start Date : 10/14/2013 Page No : 2

•


Start Time Right Thru Left App. Total Right Total Right Total Right Total Right Total Right Total Right Right Right Total Start Start <t< th=""><th></th><th></th><th>MARVIN Southb</th><th></th><th></th><th></th><th></th><th>NRD SE bound</th><th></th><th>UN</th><th></th><th>LLS RD S bound</th><th></th><th></th></t<>			MARVIN Southb					NRD SE bound		UN		LLS RD S bound		
Pagk Hour From 04:00 PM to 05:45 PM - Peak 1 of 1 11 11 11 126 0 23 149 124 Volume 19 659 0 360 57 417 126 0 23 149 124 Percent 2.8 97.2 0.0 86.3 13.7 102 33 0 5.38 331 Peak Factor 0 85 17 102 53.8 0 54.6 Proceed 5.15 PM 0.340 0.340 Peak Factor 0.887 0.515 PM 0 101 9 1100 0 8 48 0.776 Peak Factor 0.887 0.387 0.948 0.948 0.776 0.340 Image Pack Factor 0.887 0.948 0.776 0.948 0.776 Image Pack Factor 0.887 0.948 0.948 0.776 0.948 0.776 Image Pack Factor 0.887 0.948 0.948 0.776 0.948 0.776 Image Pack Factor Image Pack Factor Image Pack Factor Image Pack Factor	Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Volume 19 659 0 678 0 360 57 417 126 0 23 149 1244 00 865 13.7 102 Peak Factor Peak Factor Volume 8 183 0 191 Peak Factor 0.515 PM Peak Factor 0.887 0 101 9 1110 0.948 0.776 0.948 0.776 0.948 0.776 0.948 0.776 0.948 0.776	Peak Hour From 0	4:00 PM to	05:45 PN	1 - Peak	1 of 1	<u>L</u>		ł.		-				
05:30 Volume 8 183 0 191 0 85 17 102 33 0 5 381 0:311 Peak Factor 0:515 PM 0 101 9 110 0:348 0:515 PM 0:340 0:340 Peak Factor 0.887 0.887 0 101 9 110 0:348 0:776 0:776 MANNIN RD SE 0.948 0.776 0.948 0.776 0.776 0.940 Image: Second PM 0.948 0.776 0.776 Image: Second Second Second Second Second PM 0.948 0.776 0.776 0.940 Image: Second Second Second PM 0.948 0.776 0.948 0.776 Image: Second Second PM 0.948 0.776 0.948 0.776 Image: Second Second PM 0.948 0.948 0.776 0.948 Image: Second Second PM 0.948 0.948 0.948 0.948 Image: Second Second PM 0.948 0.948 0.948 0.948 0.948 Image: Second Second P	Volume		659		678	o			417		0		149	1244
Peak Factor 8 183 0 191 05:15 PM 05:15 PM 05:15 PM 05:15 PM 00:40 Peak Factor 0.887 0.887 0.040 0.940 0.940 0.940 MARVIN RD SE 0.940 0.940 0.940 0.940 0.940 Image: Sector 0.987 0.987 0.940 0.940 0.940 Image: Sector 0.987 0.987 0.940 0.940 0.940 Image: Sector 0.987 0.988 0.940 0.940 0.940 Image: Sector 0.987 101 9 101 0.940 0.940 Image: Sector Image: Sector Image: Sector Image: Sector 0.940 0.940 Image: Sector Image: Sector Image: Sector Image: Sector 0.940 0.940 Image: Sector Image: Sector Image: Sector Image: Sector Image: Sector 0.940 Image: Sector Image: Sector Image: Sector Image: Sector Image: Sector 0.940 Image: Sector Image: Sector Image: Sector Image: Sector	Percent				101			13.7	102	84.6			20	221
High Int. 05:30 PM 0 101 9 110 0 05:15 PM 40 0 8 48 0.776 Peak Factor 0.887 0 101 9 110 0 9 101 9 101 0 8 48 0.776 Image: State Factor 0.887 0 101 9 110 0 8 48 0.776 Image: State Factor 0.887 0 101 9 110 0 8 48 0.776 Image: State Factor 0.887 0 101 9 101 9 101 9 101 9 101 9 101<	Peak Factor	8	183	U	191		60,	17	102		U	5	30	
Peak Factor 0.887 0.948 0.776	High Int.		100	0	101		101	0	110		0	0	10	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		8	183	U		· U	101	Э		40	U	0		
383 778 1061 19 559 1011 1011 1 1 1014 1014 1014 1014 2013 50500 PM 1014 1014 1014 1014 2013 50500 PM 1014 1014 1014 1014 2013 50500 PM 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 1014 101						Nut		D SE Total						
Flight Thru Image: State of the state						383	678	1061						
Flight Thru Image: State of the state						Г	191	659]						
$ \begin{array}{c} $						L	Right Th	nru						
							€ ,	Ļ						
]			•						
		E 225					Î							
		RDS.	11	Ť			North							
		149 149		1		10/14/	2013 5:00:	00 PM						
			126 light	1		10/14/2	2013 5:45:	00 PM						
		JNIO 76	LJ# ·	*		Unshi	ted							
Left Thru 57 360 785 417 1202														
Left Thru 57 360 785 417 1202														
Left Thru 57 360 785 417 1202														
Left Thru 57 360 785 417 1202														
Left Thru 57 360 785 417 1202														
Left Thru 57 360 785 417 1202														
							€]	↑						
785 417 1202						٢	Left TI	hru 360						
785 417 [1202] Out In Total						L]						
						Out	In	Total						

 File Name
 : 3415a

 Site Code
 : 00003415


 Start Date
 : 10/9/2013

 Page No
 : 1

File Name : 3415a Site Code : 00003415 Start Date : 10/9/2013 Page No : 2

		MARVII South	N RD S Ibound	E .	F	PACIFIC AVE SE Westbound					N RD S bound	E	PACIFIC AVE SE Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Fro	m 04:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	05:00	PM .															
Volume	0	1242	0	1242	0	487	0	487	35	370	53	458	134	266	33	433	2620
Percent	0.0	100. 0	0.0		0.0	100. 0	0.0		7.6	80.8	11.6		30.9	61.4	7.6		
05:30 Volume	0	341	0	341	0	127	0	127	11	105	12	128	35	50	6	91	687
Peak Factor High Int.	05:30	PM			05:00	PM			05:15	PM			05:15	PM			0.953
Volume Peak Factor	0	341	0	341 0.911	0	129	0	129 0.944	9	113	12	134 0.854	36	88	10	134 0.808	

HCM 2010 Signalized Intersection Summary 13: Union Mills Rd SE & Pacific Ave SE

	+	\mathbf{i}	4		1	1	J.
Movement	EBT	- EBR	WBL	WBT	NBL	NBR	:
Lane Configurations	朴		ሻ	††	ኘ	۴	
Volume (veh/h)	767	192	24	643	112	15	
Number	4	14	3	8	5	12	
nitial Q (Qb), veh	. 0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow veh/h/ln	190.0	190.0	190.0	188.1	188.1	188.1	
Lanes	2	0	1	2	1	1	
Cap, veh/h	1553	389	46	2488	224	200	
Arrive On Green	0.53	0.53	0.03	0.66	0.12	0.12	
Sat Flow, veh/h	2935	735	1810	3762	1792	1599	
Grp Volume(v), veh/h	540	503	26	699	122	16	
Grp Sat Flow(s),veh/h/ln	1900	1770	1810	1881	1792	1599	
Q Serve(g_s), s	7.0	7.0	0.5	2.9	2.4	0.3	
Cycle Q Clear(g_c), s	7.0	7.0	0.5	2.9	2.4	0.3	
Prop In Lane		0.42	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	1005	937	46	2488	224	200	
V/C Ratio(X)	0.54	0.54	0.57	0.28	0.55	0.08	
Avail Cap(c_a), veh/h	1320	1230	193	3419	862	769	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	5.8	5.8	18.0	2.6	15.4	14.5	
Incr Delay (d2), s/veh	0.4	0.5	10.6	0.1	2.1	0.2	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q (50%), veh/In	2.4	2.2	0.3	0.7	1.0	0.1	
Lane Grp Delay (d), s/veh	6.2	6.3	28.6	2.7	17.4	14.6	
Lane Grp LOS	A	A	C	A	В	В	
Approach Vol, veh/h	1043		<u> </u>	725	138		
Approach Delay, s/veh	6.3			3.6	17.1		
Approach LOS	A			A a	В		•
Timer	<u>л</u>						
Assigned Phs	4		3	8	Anippine star		
Phs Duration (G+Y+Rc), s	23.8		4.9	28.7			
Change Period (Y+Rc), s	4.0		4.0	4.0			
Max Green Setting (Gmax), s	26.0		4.0	34.0			
Max Q Clear Time (g_c+I1), s	9.0		2.5	4.9			
Green Ext Time (p_c), s	10.8		0.0	15.0			
ntersection Summary							
HCM 2010 Ctrl Delay			6.0				
HCM 2010 LOS			A				

7/11/2013 Baseline

HCM 2010 Signalized Intersection Summary 13: Union Mills Rd SE & Pacific Ave SE

2016 PM Peak Volumes Without Project 10/21/2013

		~					
		•	Ŧ			1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ተ ኈ		ሻ	ተተ	ሻ	1	
Volume (veh/h)	884	228	26	736	133	16	
Number	4	14	3	8	5	12	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow veh/h/ln	190.0	190.0	190.0	188.1	188.1	188.1	
Lanes	2	0	1	2	1	1	
Cap, veh/h	1589	409	48	2520	239	214	
Arrive On Green	0.54	0.54	0.03	0.67	0.13	0.13	
Sat Flow, veh/h	2917	751	1810	3762	1792	1599	
Grp Volume(v), veh/h	625	584	28	800	145	17	
Grp Sat Flow(s),veh/h/ln	1900	1768	1810	1881	1792	1599	
Q Serve(g_s), s	9.1	9.1	0.6	3.6	3.1	0.4	
Cycle Q Clear(g_c), s	9.1	9.1	0.6	3.6	3.1	0.4	
Prop In Lane	4005	0.42	1.00	0500	1.00	1.00	
Lane Grp Cap(c), veh/h	1035	963	48	2520	239	214	
V/C Ratio(X)	0.60	0.61	0.58	0.32	0.61	0.08	
Avail Cap(c_a), veh/h	1214	1129	178	3142	792	707	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00 16.6	1.00 15.4	
Uniform Delay (d), s/veh	6.3 0.6	6.3	19.6 10.6	2.8 0.1	2.5	0.2	
Incr Delay (d2), s/veh	0.0	0.7	0.0		2.5 0.0	0.2	
Initial Q Delay(d3),s/veh	0.0 3.1	0.0 2.9	0.0	0.0 0.9	0.0 1.4	0.0	
%ile Back of Q (50%), veh/In	5.1 6.9	2.9 7.0	0.4 30.1	2.9	19.1	15.6	
Lane Grp Delay (d), s/veh	0.9 A	7.0 A	30.1 C	2. 9 A	B	13.0 B	
Lane Grp LOS		Λ	0	828	162	D	
Approach Vol, veh/h	1209 7.0		1	020 3.8	18.7		
Approach Delay, s/veh				3.0 A	10.7 B		
Approach LOS	A			~			
Timer			0	0			
Assigned Phs	4		3	8 21 2			
Phs Duration (G+Y+Rc), s	26.2 4.0		5.1 4.0	31.3 4.0			
Change Period (Y+Rc), s							
Max Green Setting (Gmax), s	26.0		4.0	34.0			
Max Q Clear Time (g_c+l1), s	11.1 11.0		2.6 0.0	5.6 17.6			
Green Ext Time (p_c), s	0.11		0.0	0.11			
Intersection Summary			• •				
HCM 2010 Ctrl Delay			6.6				
HCM 2010 LOS			A				
Notes							

7/11/2013 Baseline

		¥	•	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1 12		ሻ	个个	ሻ	7	
Volume (veh/h)	885	243	26	737	142	16	
Number	4	14	3	8	5	12	
İnitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow veh/h/In	190.0	190.0	190.0	188.1	188.1	188.1	
Lanes	2	0	1	2	1	. 1	
Cap, veh/h	1564	428	48	2512	248	221	
Arrive On Green	0.54	0.54	0.03	0.67	0.14	0.14	
Sat Flow, veh/h	2875	786	1810	3762	1792	1599	· · · · · · · · · · · · · · · · · · ·
Grp Volume(v), veh/h	635	591	28	801	154	17	
Grp Sat Flow(s),veh/h/ln	1900	1761	1810	1881	1792	1599	
Q Serve(g_s), s	9.4	9.5	0.6	3.7	3.3	0.4	
Cycle Q Clear(g_c), s	9.4	9.5	0.6	3.7	3.3	0.4	
Prop In Lane		0.45	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	1033	958	48	2512	248	221	
V/C Ratio(X)	0.61	0.62	0.58	0.32	0.62	0.08	
Avail Cap(c_a), veh/h	1199	1112	176	3105	783	699	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	6.4	6.5	19.8	2.9	16.7	15.5	
Incr Delay (d2), s/veh	0.7	0.8	10.6	0.1	2.5	0.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile Back of Q (50%), veh/ln	3.4	3.2	0.4	0.9	1.5	0.1	
Lane Grp Delay (d), s/veh	7.2	7.3	30.4	3.0	19.3	15.6	
Lane Grp LOS	<u>A</u>	A	C	<u>A</u>	B	В	
Approach Vol, veh/h	1226			829	171		
Approach Delay, s/veh	7.2			3.9	18.9		
Approach LOS	A	And all the state of the state	- 10 The A - 10 The Sectory of the Sector of	Α	В		
Timer							
Assigned Phs	4		3	8			
Phs Duration (G+Y+Rc), s	26.4		5.1	31.5			
Change Period (Y+Rc), s	4.0		4.0	4.0			
Max Green Setting (Gmax), s	26.0		4.0	34.0			
Max Q Clear Time (g_c+l1), s	11.5		2.6	5.7			
Green Ext Time (p_c), s	10.9		0.0	17.7			
Intersection Summary							
HCM 2010 Ctrl Delay			6.9				
HCM 2010 LOS			А				
Notes						1. 1	

HCM 2010 Roundabout 14: Marvin Rd SE & Pacific Ave SE

Intersection					Na si Katalari				(1999) (1999)
Intersection Delay, s/veh	15.3		en en en en genne en genne	S. S	n nitere and an internet of the state of the	والمعادية والمعارية والمقرار	er et inder eine eine Stellenen Stimmen die eine Anter-	and the second	n second ja
Intersection LOS	С								
Approach		EB		WB		NB		SB	
Entry Lanes		2	<u></u>	2		2		2	
Conflicting Circle Lanes		2		2		2		2	
Adj Approach Flow, veh/h		456		512		482		1308	
Demand Flow Rate, veh/h		460		517		487		1321	
Vehicles Circulating, veh/h		1306		485		849		302	
Vehicles Exiting, veh/h		317		851		917		700	
Follow-Up Headway, s		3.186		3.186		3.186		3.186	
Ped Vol Crossing Leg, #/h		0		0		0		0	
Ped Cap Adj		1.000		1.000		1.000		1.000	
Approach Delay, s/veh		19.7		8.4		11.8		17.8	
Approach LOS		С		А		В		С	
Lane	Left	Right	Left	Right	Left	Right	Left	Right	
Designated Moves	LT	TR	LT	TR	LT	TR	LT	TR	
Assumed Moves	LT	TR	` LT	R	LT	TR	LT	TR	
RT Channelized									
Lane Util	0.470	0.530	0.474	0.526	0.470	0.530	0.470	0.530	
Critical Headway, s	4.293	4.113	4.293	4.113	4.293	4.113	4.293	4.113	
Entry Flow, veh/h	216	244	245	272	229	258	621	700	
Cap Entry Lane, veh/h	424	453	785	805	598	624	901	915	
Entry HV Adj Factor	0.993	0.9 9 1	0.992	0.989	0.989	0.990	0.990	0.990	
Flow Entry, veh/h	214	242	243	269	227	256	615	693	
Cap Entry, veh/h	421	449	779	796	591	618	892	906	
V/C Ratio	0.509	0.539	0.312	0.338	0.383	0.414	0.689	0.765	
Control Delay, s/veh	19.6	19.7	8.3	8.5	11.7	11.9	15.9	19.5	
LOS	С	С	А	А	В	В	С	С	
95th %tile Queue, veh	3	3	1	1	2	· 2	6	8	

HCM 2010 Roundabout 14: Marvin Rd SE & Pacific Ave SE

2016 PM Peak Volumes Without Project 10/21/2013

Intersection									
Intersection Delay, s/veh	22.7								
Intersection LOS	С								
Approach		EB		WB		NB		SB	
Entry Lanes		2		2		2		2	
Conflicting Circle Lanes		2		2		2		2	
Adj Approach Flow, veh/h		500		562		545		1506	
Demand Flow Rate, veh/h		505		567		550		1522	
Vehicles Circulating, veh/h		1502		550		946		331	
Vehicles Exiting, veh/h		351		946		1061		786	
Follow-Up Headway, s		3.186		3,186		3.186		3.186	
Ped Vol Crossing Leg, #/h		0		0		0		0	
Ped Cap Adj		1.000		1.000		1.000		1.000	
Approach Delay, s/veh		29.8		9.5		14.6		28.1	
Approach LOS		D		А		В		D	
Lane	Left	Right	Left	Right	Left	Right	Left	Right	
Designated Moves	LT	TR	LT	TR	LT	TR	LT	TR	
Assumed Moves	LT	TR	LT	R	LT	TR	LT	TR	
RT Channelized									
Lane Util	0.469	0.531	0.473	0.527	0.469	0.531	0.470	0.530	
Critical Headway, s	4.293	4.113	4.293	4.113	4.293	4.113	4.293	4.113	
Entry Flow, veh/h	237	268	268	299	258	292	715	807	
Cap Entry Lane, veh/h	366	395	748	769	556	583	882	896	
Entry HV Adj Factor	0.992	0.989	0.992	0.990	0.992	0.988	0.990	0.989	
Flow Entry, veh/h	235	265	266	296	256	289	708	798	
Cap Entry, veh/h	363	390	742	761	551	576	873	887	
V/C Ratio	0.647	0.679	0.358	0.389	0.464	0.501	0.811	0.900	
Control Delay, s/veh	29.6	30.0	9.3	9.7	14.4	14.9	23.2	32.5	
LOS	D	D	А	А	В	В	С	D	
95th %tile Queue, veh	4	5	2	2	2	3	9	13	

7/11/2013 Baseline

HCM 2010 Roundabout 14: Marvin Rd SE & Pacific Ave SE

,

Intersection Intersection Delay, s/veh	23.6								
Intersection LOS	20.0 C								
Approach	-	EB		WB		NB		SB	
Entry Lanes		2	an a	2		2		2	1991 - Har 2014 - 1
Conflicting Circle Lanes		2		2		2		2	
Adj Approach Flow, veh/h		502		563		559		1523	
Demand Flow Rate, veh/h		507		568		565		1539	
Vehicles Circulating, veh/h		1520		564		946		334	
Vehicles Exiting, veh/h		353		947		1081		798	
Follow-Up Headway, s		3.186		3.186		3.186		3.186	
Ped Vol Crossing Leg, #/h		0.100		0.100		0		0	
Ped Cap Adj		1.000		1.000		1.000		1,000	
Approach Delay, s/veh		31.0		9.7		15.0		29.5	
Approach LOS		D 1.0		A		C		D	
 A state of a second seco	and a state of the s						1 4	. There is a second structure	an a
Lane	Left	Right	Left	Right	Left	Right	Left	Right	
Designated Moves	LT	TR	LT	TR	LT	TR	LT	TR	
Assumed Moves	LT	TR	LT	R	LT	TR	LT	TR	
RT Channelized									
Lane Util	0.469	0.531	0.474	0.526	0.471	0.529	0.470	0.530	
Critical Headway, s	4.293	4.113	4.293	4.113	4,293	4.113	4.293	4.113	
Entry Flow, veh/h	238	269	269	299	266	299	723	816	
Cap Entry Lane, veh/h	361	390	740	761	556	583	880	894	
Entry HV Adj Factor	0.991	0.989	0.992	0.990	0.989	0.992	0.990	0.989	
Flow Entry, veh/h	236	266	267	296	263	297	716	807	
Cap Entry, veh/h	358	386	734	754	549	578	. 871	885	
V/C Ratio	0.659	0.690	0.363	0.393	0.479	0.513	0.822	0.912	
Control Delay, s/veh	30.8	31.1	9.5	9.8	14.8	15.2	24.2	34.3	
LOS	D	D	А	А	В	С	C	D	
95th %tile Queue, veh	4	5	2	2	3	3	9	13	

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis 11: Marvin Rd SE & Union Mills Rd SE

Existing PM Peak Volumes 10/21/2013

	۶	\mathbf{i}	1	t	ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations Volume (veh/h) Sign Control	23 Stop	126	*1 57	↑ 360 Free	659 Free	19	
Grade Peak Hour Factor	0% 0.92	0.92	0.92	0% 0.92	0% 0.92	0,92	
Hourly flow rate (vph)	0.92	0.92 137	0.92 62	0.92 391	0.92 716	21	
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)						21	
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked				None	None		
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	1242	727	737				
vCu, unblocked vol	1242	727	737				
tC, single (s) tC, 2 stage (s)	6.4	6.2	4.1				
tF (s)	3.5	3.3	2.2				
p0 queue free %	86	68	93				
cM capacity (veh/h)	181	428	878				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1			
Volume Total	162	62	391	737			
Volume Left	25	62	0	0			
Volume Right	137	0	0	21			
cSH	353	878	1700	1700			
Volume to Capacity	0.46	0.07	0.23	0.43			
Queue Length 95th (ft)	58	6	0	0			
Control Delay (s)	23.5	9.4	0.0	0.0			
Lane LOS	C	A					
Approach Delay (s) Approach LOS	23.5 C	1.3		0.0			
Intersection Summary							
Average Delay Intersection Capacity Utilizati Analysis Period (min)	ion		3.2 58.2% 15	IC	CU Level o	of Service	В

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis 11: Marvin Rd SE & Union Mills Rd SE

2016 PM Peak Volumes Without Project 10/21/2013

	۶	\mathbf{i}	1	Ť	¥	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		٦	*	4		
Volume (veh/h)	30	156	74	431	766	26	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	33	170	80	468	833	28	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)		•					
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1476	847	861				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	4.170	0.17					
vCu, unblocked vol	1476	847	861				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	0.5	0.0	0.0				
tF (s)	3.5 74	3.3	2.2 90				
p0 queue free %	74 126	54 365	90 789				
cM capacity (veh/h)				the second of the	o na il una data data di		
Direction, Lane #	EB 1	NB 1	NB 2	SB 1			
Volume Total	202	80	468	861			
Volume Left	33	80	-0	0			
Volume Right	170	0	0	28			
cSH	280	789	1700	1700			
Volume to Capacity	0.72	0.10	0.28	0.51			
Queue Length 95th (ft)	128	8	0	0			
Control Delay (s)	45.4	10.1	0.0	0.0			
Lane LOS	E	B		0.0			
Approach Delay (s)	45.4	1.5		0.0			
Approach LOS	E			•			
Intersection Summary							
Average Delay			6.2				
Intersection Capacity Utiliza	tion		67.3%	IC	CU Level	of Service	C
Analysis Period (min)			15				

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis
11: Marvin Rd SE & Union Mills Rd SE

2016 PM Peak Volumes With Project

Movement EBL EBR NBL NBT SBT SBR Lane Configurations Y +		≯	\mathbf{i}	*	†	ţ	4	
Volume (ven/h) 30 172 83 444 788 26 Sign Control Stop Free	Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Sign Control Stop Free Free Free Grade 0%<	Lane Configurations							
Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 33 187 90 483 857 28 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) None None Median storage veh) Upstream signal (ft) PX, platoon unblocked VC, conflicting volume 1534 871 885 VC, conflicting volume 1534 871 885 VC, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 5 If (s) 33 90 0 0 Volume 14 54 773 Drection, Lane # EB1 NB1 NB2 SB1 Volume 14 33 90 0 0 Volume 153 875 28 Set 1 Set 1 <td>Volume (veh/h)</td> <td></td> <td>172</td> <td>83</td> <td>444</td> <td></td> <td>26</td> <td></td>	Volume (veh/h)		172	83	444		26	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Houry flow rate (vph) 33 187 90 483 857 28 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Median storage veh) None None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vCl, stage 1 conf vol vCl, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage (s) Ff (s) 3.5 3.3 2.2 pd queue free % 72 47 88 Volume Total 220 90 483 885 Volume Edit 33 90 0 0 Volume Edit 33 90 0 0 Volume Edit 33 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sign Control	Stop			Free	Free		
Hourly flow rate (vph) 33 187 90 483 857 28 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Percent Blockage Right turn flare (veh) None None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1534 871 885 VC2, unblocked vol 1534 871 885 VC1, unblocked vol 1534 871 885 VC2, unblocked vol 1534 871 885 VC2, unblocked vol 1534 871 885 VC2, unblocked vol 1534 871 885 VC3 VC4 VC2 VC2 VI	Grade	0%			0%	0%		
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage (s) If 1534 871 885 IC, § stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol 1534 871 885 VC1, unblocked vol 1534 871 885 Volume toch vol 1534 871 If (s) 3.5 3.3 2.2 P0 queue free % 72 47 88 Volume Total 220 90 483 885 Volume total 220 90 483 885 Volume Right 187 0 28 281 28 28 24 27 773 7700 7700 773 7700 7700 20 20 20 483 885 270 20 20 28	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC2, conflicting volume vC3, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol (s, single (s) 6.4 4.2 4.1 tC, 2 stage 2 p0 queue free % 72 47 88 Median Storage veh) Upstream signal (ft) pX, platoon unblocked vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage	Hourly flow rate (vph)	33	187	90	483	857	28	
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vOutme 5 conf vol	Pedestrians							
Percent Blockage Right tum flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1534 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage (s) if (s) 3.5 jd queue free % 72 jd qd queue free % <td>Lane Width (ft)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lane Width (ft)							
Right turn flare (veh) None None None Median storage veh) Upstream signal (ft) PX, platoon unblocked VC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, unblocked vol 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 3 vC1 vC2 vC1, stage 1 conf vol vC1, stage 1 conf vol vC2, stage 3 vC1 vC2 vC1 vC1 vC1 tC2, stage (s) if (s) 3.5 3.3 2.2 pD que a constraint storage volume vc1 tC4 capacity (veh/h) 114 354 773 Diffection, Lane # EB 1 NB 2 SB 1 Volume Left 33 90 0 0 28 <td>Walking Speed (ft/s)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Walking Speed (ft/s)							
Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1534 871 885 iC, single (s) 6.4 6.2 4.1 1.52 1.53 iC, stage (s) T 885 1.1 1	Percent Blockage							
Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol vC1, stage 1 conf vol vC2, stage (s) 6.4 6.2 4.1 total total tf (s) 3.5 3.3 2.2 p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume total 200 v0 0 0 Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 0 0 0 0	Right turn flare (veh)							
Upstream signal (ff) pX, platoon unblocked yC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1534 871 885 vCu, unblocked vol 1534 871 885 vCu, unblocked vol 1534 871 885 vCu, unblocked vol 1534 871 885 vCu, unblocked vol 1534 871 885 vCu, unblocked vol 1534 871 885 vCu, unblocked vCu, unblocked<	Median type				None	None		
pX, platoon unblocked 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1534 871 885 iC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 1 14 354 773 p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Eft 33 90 0 0 Volume Right 187 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 1.6 0.0 Lane LOS F B 0.0 0.0 Approach LOS F B 0.0 0.0 Approach LOS F 0.0 <t< td=""><td>Median storage veh)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Median storage veh)							
vC, conflicting volume 1534 871 885 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1534 871 885 tC, single (s) 6.4 6.2 4.1 t/t t/t tC, single (s) 6.4 6.2 4.1 t/t t/t tC, single (s) 6.4 6.2 4.1 t/t t/t tC, stage (s)								
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1534 871 885 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) 1 1 1 tF (s) 3.5 3.3 2.2 p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 1.6 0.0 Approach LOS F B 1.6 0.0 Approach LOS F 1.6 0.0								
vC2, stage 2 conf vol vCu, unblocked vol 1534 871 885 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s) tf (s) 3.5 3.3 2.2 p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 28 cSH cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach LOS F Intersection Summary 81 0.12 0.40 Average Delay 8.1 0.0 0.0		1534	871	885				
vCu, unblocked vol 1534 871 885 tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s)								
tC, single (s) 6.4 6.2 4.1 tC, 2 stage (s)								
tc, 2 stage (s) tF (s) 3.5 3.3 2.2 p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Left 33 90 0 0 Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F Intersection Summary Average Delay 8.1								
tF (s) 3.5 3.3 2.2 p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B 0.0 0.0 Approach Delay (s) 57.9 1.6 0.0 Approach LOS F B 0.0 Average Delay 8.1 8.1		6.4	6.2	4.1				
p0 queue free % 72 47 88 cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Queue Length 95th (ft) 162 10 0 0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F B Approach LOS F B Average Delay 8.1 8.1								
cM capacity (veh/h) 114 354 773 Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 0 28 CSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B 0.12 0.28 0.52 Approach Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B 0.12 0.12 0.28 Approach LOS F B 0.16 0.0 Approach LOS F 8.1 0.1 0.1								
Direction, Lane # EB 1 NB 1 NB 2 SB 1 Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F X X X X								
Volume Total 220 90 483 885 Volume Left 33 90 0 0 Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F N N N N N Average Delay 8.1 8.1 1 1 1 1	cM capacity (veh/h)	114	354	773				
Volume Left 33 90 0 0 Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F B 4 4 4 4 4 Average Delay 8.1 8.1 4 4 4 4								
Volume Right 187 0 0 28 cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F B Approach LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F B Approach LOS F B Approach LOS F B Average Delay 8.1 8.1 8.1 8.1								
cSH 270 773 1700 1700 Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B								
Volume to Capacity 0.81 0.12 0.28 0.52 Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B								
Queue Length 95th (ft) 162 10 0 0 Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F Intersection Summary 8.1 8.1								
Control Delay (s) 57.9 10.3 0.0 0.0 Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach Delay (s) 57.9 1.6 0.0 1.6 0.0 Approach LOS F 8.1 1.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Lane LOS F B Approach Delay (s) 57.9 1.6 0.0 Approach LOS F 1 Intersection Summary 8.1								
Approach Delay (s) 57.9 1.6 0.0 Approach LOS F 1 Intersection Summary 8.1				0.0	0.0			
Approach LOS F Intersection Summary 8.1								
Intersection Summary Average Delay 8.1			1.6		0.0			
Average Delay 8.1	Approach LOS	F						
······								
	Intersection Capacity Utilization	۱		69.9%	IC	CU Level	of Service	C
Analysis Period (min) 15	Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 9: Marvin Rd SE & 19th Ave SE

Existing PM Peak Volumes 10/21/2013

	٭		$\mathbf{\hat{z}}$	•	◄	×.	1	Ť	1	\$	ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Volume (veh/h) Sign Control	7	د)، 0 Stop	1	4	€ 0 Stop	62	۲ 0	1≱ 319 Free	2	*1 125	1 ≱ 637 Free	12
Grade Peak Hour Factor Hourly flow rate (vph) Pedestrians	0.92 8	0% 0.92 0	0.92 1	0.92 4	0% 0.92 0	0.92 67	0.92 0	0% 0.92 347	0.92 2	0.92 136	0% 0.92 692	0.92 13
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)												
Median type Median storage veh) Upstream signal (ft)								None			None	
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	1385	1320	699	1313	1325	348	705			349		
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	1385 7.1	1320 6.5	699 6.2	1313 7.1	1325 6.5	348 6.2	705 4.1			349 4.1		
tF (s) p0 queue free % cM capacity (veh/h)	3.5 92 101	4.0 100 141	3.3 100 443	3.5 97 125	4.0 100 140	3.3 90 700	2.2 100 902			2.2 89 1221		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total Volume Left	9 8	72 4	0 0	349 0	136 136	705 0					2	·····
Volume Right cSH	1 112	67 547	0 1700	2 1700	0 1221	13 1700						
Volume to Capacity Queue Length 95th (ft)	0.08 6	0.13 11	0.00 0	0.21 0	0.11 9	0.41 0						
Control Delay (s) Lane LOS	40.0 E	12.6 B	0.0	0.0	8.3 A	0.0						
Approach Delay (s) Approach LOS	40.0 E	12.6 B	0.0		1.3							
Intersection Summary												
Average Delay Intersection Capacity Utilizatio Analysis Period (min)	n		1.9 51.5% 15	IC	U Level o	of Service			A			

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis 9: Marvin Rd SE & 19th Ave SE

2016 PM Peak Volumes Without Project 10/21/2013

	*		\mathbf{i}	4		×	•	Ť	1	4	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	NBT	NBR	SBL	SBT	SBR
Lane Configurations Volume (veh/h) Sign Control	7	د)، 0 Stop	1	4	0 Stop	67) 1 0	1 ≱ 399 Free	2	ች 135	1 ≱ 762 Free	13
Grade	0.02	0%	0.00	0.00	0%	0.02	0.92	0% 0.92	0.92	0.02	0% 0.92	0.92
Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage	0.92 8	0.92	0.92 1	0.92 4	0.92 0	0.92 73	0.92	434	0.92	0.92 147	0.92 828	0.92 14
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked								None			None	
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	1635	1565	835	1558	1571	435	842			436		
vCu, unblocked vol	1635	1565	835	1558	1571	435	842			436		
tC, single (s) tC, 2 stage (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free % cM capacity (veh/h)	88 65	100 98	100 370	95 83	100 97	88 626	100 802			87 - 87 1135		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	9	77	0	436	147	842				and the state of the		
Volume Left	8	4	0	0	147	0						
Volume Right	1	73	0	2	0	14						
cSH	72	457	1700	1700	1135	1700						
Volume to Capacity	0.12	0.17	0.00	0.26	0.13	0.50						
Queue Length 95th (ft)	10	15	0	0	11	0						
Control Delay (s)	61.3	14.5	0.0	0.0	8.6	0.0						
Lane LOS	F	В	·		A							
Approach Delay (s) Approach LOS	61.3 F	14.5 B	0.0		1.3							
Intersection Summary												
Average Delay Intersection Capacity Utiliza Analysis Period (min)	ation	1.9 58.5% ICU Level of Service 15				of Service			В			

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis	
9: Marvin Rd SE & 19th Ave SE	

2016 PM Peak Volumes With Project

	×	-+	\mathbf{i}	-		×	*	1	1	4	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Volume (veh/h) Sign Control Grade	7	4) 0 Stop 0%	1	4	↔ 0 Stop 0%	67	آتا 0	421 Free 0%	2	* 135	1 ≱ 800 Free 0%	13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)	8	0	1	4	0	73	0	458	2	147	870	14
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked								None			None	
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	1701	1630	877	1623	1636	459	884			460		
vCu, unblocked vol tC, single (s) tC, 2 stage (s)	1701 7.1	1630 6.5	877 6.2	1623 7.1	1636 6.5	459 6.2	884 4.1	,		460 4.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free % cM capacity (veh/h)	87 58	100 89	100 351	94 75	100 88	88 606	100 774			87 1112		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	9	77	0	460	147	884						
Volume Left Volume Right	8 1	4 73	0 0	0 2	147 0	0 14						
cSH	65	433	1700	1700	1112	1700						
Volume to Capacity	0.13	0,18	0.00	0.27	0.13	0.52						
Queue Length 95th (ft)	11	16	0	0	11	0						
Control Delay (s)	68.9	15.1	0.0	0.0	8.7	0.0						
Lane LOS	F	С			А							
Approach Delay (s) Approach LOS	68.9 F	15.1 C	0.0		1.2							
Intersection Summary												
Average Delay Intersection Capacity Utiliz Analysis Period (min)	ation		1.9 60.5% 15	IC	CU Level o	of Service			В			

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis 1: Marvin Rd SE & Woodgrove St SE

Existing PM Peak Volumes 10/21/2013

	۶		-	×	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ኻ				¥		na senten en e
Volume (veh/h)	65	408	223	21	16	34	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	71	443	242	23	17	37	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)		T 14/1 T 1					
Median type		TWLTL	None				
Median storage veh)		2					
Upstream signal (ft) pX, platoon unblocked							
vC, conflicting volume	265				839	254	
vC1, stage 1 conf vol	200				254	204	
vC2, stage 2 conf vol					585		
vCu, unblocked vol	265				839	254	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free %	95				96	95	
cM capacity (veh/h)	-1310				493	790	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1			
Volume Total	71	443	265	54			
Volume Left	71	0	0	17			•
Volume Right	0	0	23	37			
cSH	1310	1700	1700	662			
Volume to Capacity	0.05	0.26	0.16	0.08			
Queue Length 95th (ft)	4	0	0	7			
Control Delay (s)	7.9	0.0	0.0	10.9			
Lane LOS	A		0.0	· B			
Approach Delay (s) Approach LOS	1.1		0.0	10,9 B			
				D			
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utilization	n		31.5%	IC	U Level a	f Service	Α
Analysis Period (min)			15				

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis 1: Marvin Rd SE & Woodgrove St SE

2016 PM Peak Volumes Without Project 10/21/2013

	≯	+		×	4	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations Volume (veh/h) Sign Control	*1 70	↑ 475 Free	1 - 282 Free	23	۲ 17 Stop	37	
Grade Peak Hour Factor Hourly flow rate (vph)	0.92 76	0% 0.92 516	0% 0.92 307	0.92 25	0% 0.92 18	0.92 40	
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)							
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked		TWLTL 2	None				
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol	332				988 319 668	319	
vCu, unblocked vol	332				988	319	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s) p0 queue free %	2.2 94				3.5 96	3.3 94	
cM capacity (veh/h)	94 1239				90 443	94 726	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1			
Volume Total	76	516	332	59	el cará en Grasterio en	n geste die statige heer gie een	e on un tate i staat 1966, en noemen fered efendat for onder 1992 feisteren 1992 ferste ferste staat de ferste
Volume Left	76	0	0	18			
Volume Right	0	0	25	40			
cSH	1239	1700	1700	604			
Volume to Capacity	0.06	0.30	0.20	0.10			
Queue Length 95th (ft)	5	0	0	8			
Control Delay (s)	8.1	0.0	0.0	11.6			
Lane LOS	Α			В			
Approach Delay (s) Approach LOS	1.0		0.0	11.6 B			
Intersection Summary							
Average Delay Intersection Capacity Utilization Analysis Period (min)	n		1.3 35.0% 15	IC	U Level c	of Service	А

7/11/2013 Baseline

HCM Unsignalized Intersection Capacity Analysis 1: Marvin Rd SE & Woodgrove St SE

2016 PM Peak Volumes With Project 10/21/2013

	۶		-	×	́ 📡	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	*	1≯		۲		
Volume (veh/h)	109	475	282	37	25	60	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	118	516	307	40	27	65	
Pedestrians							
Lane Width (ft) Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		TWLTL	None				
Median storage veh)		2	None				
Upstream signal (ft)		-					
pX, platoon unblocked							
vC, conflicting volume	347				1080	327	
vC1, stage 1 conf vol					327		
vC2, stage 2 conf vol					753		
vCu, unblocked vol	347				1080	327	
tC, single (s)	4.1				6.4	6.2	· ·
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free %	90 1000				93	91 710	
cM capacity (veh/h)	1223				393	719	•
Direction, Lane #	EB 1	EB 2	WB 1	SB 1			
Volume Total	118	516	347	92			
Volume Left	118 0	0	0 40	27 65			
Volume Right cSH	1223	0 1700	40 1700	00 578			
Volume to Capacity	0.10	0.30	0.20	0.16			
Queue Length 95th (ft)	8	0.00	0.20	14			
Control Delay (s)	8.3	0.0	0.0	12,4			
Lane LOS	A	010	010	В			
Approach Delay (s)	1.5		0.0	12.4			
Approach LOS				В			
Intersection Summary							
Average Delay			2.0				
Intersection Capacity Utiliza	ition		38.2%	IC	U Level a	f Service	А
Analysis Period (min)			15				

7/11/2013 Baseline