

# 2000 24 ${ }^{\text {th }}$ Avenue NW CRITICAL AREAS STUDY 

Prepared for:<br>RJ Development<br>401 Central Street SE<br>Olympia, WA 98501<br>Attn: Tyler Burbridge

## Authored by: <br> Kerrie McArthur, PWS, and Natalie Dietsch, WPIT Confluence Environmental Company

November 2022

This report should be cited as:
Confluence (Confluence Environmental Company). 2022. 2000 24th Avenue NW critical areas study. Prepared for RJ Development, Olympia, Washington, by Confluence, Seattle, Washington.

## TABLE OF CONTENTS

1.0 INTRODUCTION ..... 1
2.0 METHODS ..... 3
2.1 Desktop Analysis .....  3
2.2 Site Investigation ..... 3
2.2.1 Wetlands .....  3
2.2.2 Streams/Shorelines .....  .5
3.0 RESULTS ..... 6
3.1 Desktop Analysis ..... 6
3.2 Test Plots ..... 6
3.3 Wetlands ..... 9
3.3.1 Wetland A ..... 9
3.3.2 Off-Site Wetland. ..... 10
3.4 Fish and Wildlife Habitat Conservation Areas ..... 10
4.0 REGULATORY IMPLICATIONS ..... 10
5.0 BUFFER IMPACT AVOIDANCE ..... 11
6.0 REFERENCES ..... 15
TABLES
Table 1. Wetland summary ..... 9
FIGURES
Figure 1. Subject property ..... 2
Figure 2. Location of test plots, soil probes, and wetlands .....  7
Figure 3. Wetlands, standard buffers, and proposed buffer reduction/addition areas. ..... 13
Figure 4. Wetlands and proposed buffer reconfiguration ..... 14

## APPENDICES

Appendix A-GIS Database Search Results
Appendix B-Wetland Delineation Methods
Appendix C-Wetland Delineation Data Forms
Appendix D—Wetland Rating Forms
Appendix E-Site Photographs

### 1.0 INTRODUCTION

The project proposes to subdivide the property for residential development on tax parcel 09750029001 at $200024^{\text {th }}$ Avenue NW, Olympia, Washington (Figure 1). Confluence Environmental Company (Confluence) prepared this report to assist with permitting the project. On October 25, 2022, Confluence conducted a site investigation to determine the presence and extent of critical areas on and adjacent to the property. The effort focused on wetlands and fish and wildlife habitat conservation areas (FWHCAs). Critical areas such as erosion hazard areas, steep slopes, and landslide hazard areas were not evaluated in this study. This report discusses the results of the study.

The property is currently developed with a single-family residence, several outbuildings, and pasturelands. The western half of the property is relatively undisturbed in a forested condition. The property is 11 acres and zoned as residential 4-8, meaning 8 units per acre (Thurston County 2022).

Figure 1. Subject property
November 2022
2000 24 ${ }^{\text {th }}$ Avenue NW Critical Areas Study

### 2.0 METHODS

Confluence conducted a critical areas study on the property. This section describes the methods used to confirm the presence or absence of critical areas.

### 2.1 Desktop Analysis

To develop a strategy for the site investigation, Confluence reviewed relevant regulations and GIS databases.

Confluence reviewed Thurston County Code (TCC) to determine the standard buffer requirements for critical areas in the project vicinity.

Confluence reviewed the GIS databases listed below for the documented presence of wetlands, streams, lakes, or species listed under the Endangered Species Act as threatened or endangered on or within 300 feet of the subject property. It was necessary to search within 300 feet to determine whether buffers for off-site critical areas encroach onto the site ( 300 feet is the largest buffer identified in TCC).

- Thurston County GIS (Thurston County 2022)
- U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) (USFWS 2022)
- Natural Resources Conservation Service (NRCS) Soil Survey (NRCS 2022a)
- Washington Department of Fish and Wildlife (WDFW) SalmonScape (WDFW 2022a)
- WDFW Priority Habitats and Species (PHS) (WDFW 2022b)
- Washington Department of Natural Resources (WDNR) Water Type GIS (WDNR 2022a)
- WDNR wetlands of high conservation value mapper (WDNR 2022b)

Results of the GIS database searches are in Appendix A.

### 2.2 Site Investigation

On October 25, 2022, Confluence conducted a site investigation to determine the presence or absence of critical areas on or near the property.

### 2.2.1 Wetlands

## Wetland Identification and Delineation

Confluence identified wetlands and delineated their boundaries using the methods described by the U.S. Army Corps of Engineers (Corps) in the Corps of Engineers Wetlands Delineation Manual (Corps 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Corps 2010). The Corps typically requires that the following 3 characteristics be present for an area to be identified as a
wetland: (1) hydrophytic vegetation, (2) hydric soil, and (3) wetland hydrology. For each criterion, there are several possible indicators that can be used to determine whether the criterion has been met. The indicators were established so that if a wetland were present on-site, sufficient indicators would be observed at any time of the year, including the driest months, to identify the wetland. Since "normal circumstances," as defined by the Corps (1987), exist on the site, all 3 criteria must be present for an area to be determined a wetland. A more detailed description of delineation methodology is provided in Appendix B. Wetland delineation data forms completed during the site investigation are provided in Appendix C.

To confirm the presence or absence of a wetland, data were collected from representative test plots within and outside of potential wetlands. The locations of the test plots were based on the presence of visual wetland indicators (e.g., wetland vegetation, evidence of standing water) or were chosen to represent vegetative, topographic, or hydrologic features in the vicinity. Within these test plots, vegetation, soils, and hydrology were examined to determine whether wetland characteristics were present (see Appendix B for details). Plots that met all 3 wetland criteria were determined to be wetland plots; plots that did not meet all 3 wetland criteria were determined to be upland plots.

Once the presence of a wetland was confirmed, visual wetland indicators, such as topographic and vegetative shifts, were used to delineate the remainder of the wetland boundary. In areas with a lack of visual wetland indicators (i.e., areas with monoculture vegetation and no clear topographic break), Confluence used soil probes to determine the wetland boundary between test plots. Confluence evaluated the presence or absence of hydric soil and wetland hydrology indicators at soil probe locations to determine whether the area represented by the soil probe was wetland or upland. Soil probe locations and presence or absence of hydric soil and wetland hydrology indicators were recorded using GPS.

Confluence used the PLANTS Database (NRCS 2022b) to provide consistency in scientific naming and the 2020 National Wetland Plant List (Corps 2020) to determine the wetland indicator status of plants.

The wetland boundary and test plot locations were flagged using pink ribbon flagging. The flags were mapped using a Trimble mapping grade GPS receiver capable of sub-meter accuracy after post-processing.

## Off-Site Wetland Identification

To assess whether there are possible wetlands with buffers encroaching from adjacent properties, Confluence modified the methods described by the Corps (Corps 1987, 2010). The modified method identified the presence or absence of visual wetland indicators. If hydrophytic vegetation was dominant and visual indicators of wetland hydrology were observed, then hydric soils were assumed to be present.

## Wetland Rating

Confluence determined wetland ratings using the Washington State Wetland Rating System for Western Washington (Hruby 2014) to assess the resource value of any wetland identified on the site. This rating system is based on the wetland functions and values, sensitivity to disturbance, rarity, and irreplaceability.

Wetland rating forms are in Appendix D.

### 2.2.2 Streams/Shorelines

No streams or shorelines were identified on the subject property, so no ordinary high water mark delineation was needed.

### 3.0 RESULTS

### 3.1 Desktop Analysis

USFWS's NWI (2022) does not map any wetlands on the subject property. Thurston County GIS (Thurston County 2022) identifies 1 wetland within the western portion of the property. No wetlands of high conservation value are mapped on or within the vicinity of the subject property (WDNR 2022b). No streams are mapped on or within the vicinity of the property (WDFW 2022a,b, WDNR 2022a, Thurston County 2022). The nearest mapped stream is located approximately 850 feet northeast of the subject property (WDNR 2022a, WDFW 2022a). The unnamed stream, unknown in type, discharges to Budd Inlet within Puget Sound. WDFW's PHS system identifies the potential presence of Yuma myotis (Myotis yumanensis), little brown bat (Myotis lucifugus), and big brown bat (Eptesicus fuscus) in the vicinity of the property. None of these species has status under the Endangered Species Act.

Soils mapped on the subject property are Alderwood gravelly sandy loam ( $8-15 \%$ slopes) and Alderwood gravelly sandy loam ( $15-30 \%$ slopes). Neither of these soils is identified as hydric (NRCS 2022a).

### 3.2 Test Plots

During the site investigation, 4 test plots were established, in both uplands and wetlands. A soil probe was also collected to rapidly determine whether an area was wetland or upland. Test plot and soil probe locations are shown on Figure 2. Test plot characteristics are detailed below. Technical terms are explained in Appendix B. Photographs of the site are in Appendix E.


Test Plot 1 (TP-1) was located in the western half of the property in an area dominated by red alder (Alnus rubra), western red-cedar (Thuja plicata), salmonberry (Rubus spectabilis), Himalayan blackberry (Rubus armeniacus), Douglas spirea (Spiraea douglasii), slough sedge (Carex obnupta), skunk-cabbage (Lysichiton americanus), and lady fern (Athyrium filix-femina). Vegetation within TP-1 passed the Dominance Test and therefore met the wetland vegetation criterion. Soil in the top layer ( $0-5$ inches) was a black ( $10 \mathrm{YR} 2 / 1$ ) silty clay loam. Soil in the second layer ( $5-9$ inches) was a black ( $10 \mathrm{YR} 2 / 1$ ) silty clay loam with $7 \%$ dark gray ( $10 \mathrm{YR} 4 / 1$ ) depletions in the matrix and 3\% dark yellowish brown (10YR 4/6) redoximorphic concentrations in the matrix. The soils met the Redox Dark Surface (F6) and Depleted Below Dark Surface (A11) hydric soil indicators; therefore, the hydric soil criterion was met. One primary wetland hydrology indicatorOxidized Rhizospheres along Living Roots (C3)-and 1 secondary indicators-FAC-Neutral Test (D5) - were observed. The presence of at least 1 primary or 2 secondary indicators meets the wetland hydrology criterion. Since TP- 1 met all 3 criteria, the area represented by TP-1 is a wetland, identified as Wetland A.

TP-2 was located in the western half of the property immediately east of TP-1. Vegetation was dominated by red alder, salmonberry, evergreen huckleberry (Vaccinium ovatum), sword fern (Polystichum munitum), field horsetail (Equisetum arvense), trailing blackberry (Rubus ursinus), and English ivy (Hedera helix). Vegetation within TP-2 passed the Dominance Test and therefore met the wetland vegetation criterion. Soil in the top layer ( $0-9$ inches) was a very dark brown ( 10 YR $2 / 2$ ) silt loam. Soil in the second layer ( $9-14+$ inches) was a gray $(2.5 Y 5 / 1$ ) silt loam with $5 \%$ dark yellowish brown (10YR 4/6) redoximorphic concentrations in the matrix. The soils met the Redox Dark Surface (F6) and Depleted Below Dark Surface (A11) hydric soil indicators; therefore, the hydric soil criterion was met. No primary or secondary wetland hydrology indicators were observed; thus, the wetland hydrology criterion was not met. Since TP-2 did not meet all 3 criteria, the area represented by TP-2 is not a wetland. TP-2 represents the transition area adjacent to Wetland A.

TP-3 was located in the western half of the property south of TP-2 in an area dominated by western red-cedar, red alder, evergreen huckleberry, salmonberry, slough sedge, sword fern, and trailing blackberry. Vegetation within TP-3 passed the Dominance Test and therefore met the wetland vegetation criterion. Soil in the top layer (0-10 inches) was a very dark brown (10YR $2 / 2$ ) silt loam. Soil in the second layer ( $10-12+$ inches) was a dark yellowish brown (10YR 4/4) silt loam. The soils did not meet any hydric soil indicator; therefore, the hydric soil criterion was not met. No primary or secondary wetland hydrology indicators were observed; thus, the wetland hydrology criterion was not met. Since TP-3 did not meet all 3 criteria, the area represented by TP-3 is not a wetland.

TP-4 was located in the western half of the property north of TP-3. Vegetation was dominated by red alder, salmonberry, salal (Gaultheria shallon), and slough sedge. Vegetation within TP-4 passed the Dominance Test and therefore met the wetland vegetation criterion. Soil in the top
layer ( $0-9$ inches) was a very dark brown (10YR 2/2) silt loam. Soil in the second layer (9-12+ inches) was a dual matrix: a very dark grayish brown ( $10 \mathrm{YR} 3 / 2$ ) and a brown (10YR 4/3) silt loam. The soils did not meet any hydric soil indicator; therefore, the hydric soil criterion was not met. No primary or secondary wetland hydrology indicators were observed; thus, the wetland hydrology criterion was not met. Since TP-4 did not meet all 3 criteria, the area represented by TP-4 is not a wetland.

### 3.3 Wetlands

TP-1 represented an area on the subject property that met all 3 wetland criteria, identified as Wetland A. One additional off-site wetland within 300 feet of the subject property was identified from the property line. These wetlands are described in detail below, summarized in Table 1, and shown on Figure 2.

Table 1. Wetland summary

|  |  | Size <br> (square <br> feet) | Water <br> Quality |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wetland Name | Hydrology |  | Total | Category |  |  |  |
| Wetland A | Palustrine forested |  | 8 | 5 | 4 | 17 | III |
| Off-Site Wetland | Palustrine emergent, <br> Palustrine unconsolidated <br> bottom |  | 7 | 4 | 3 | 14 | IV 3 |

### 3.3.1 Wetland $A$

Wetland A is located in the western half of the property and extends off-site to the south. The wetland is approximately 14,060 square feet. The off-site boundary of Wetland A was approximated using site observations, elevation data, and aerial imagery (Thurston County 2022). TP-1, described above in Section 3.2, represents Wetland A. Hydrologic inputs to Wetland A are dominated by groundwater and precipitation.

According to the Cowardin classification system (FGDC 2013), Wetland A is a forested wetland. Dominant vegetation in Wetland A includes western red-cedar, red alder, salmonberry, slough sedge, and lady fern. The boundary of Wetland A was determined by a distinct topographic break, evidence of standing water, and the vegetative shift to non-hydrophytic vegetation (e.g, sword fern, evergreen huckleberry, salal). According to the 2014 Wetland Rating System (Hruby 2014), Wetland A was rated as a Category III wetland, with a water quality score of 8 , hydrology score of 5 , and habitat score of 4 .

### 3.3.2 Off-Site Wetland

No test plots were evaluated in the off-site wetland, located approximately 35 feet north of the property, because Confluence did not have access to the property on which this wetland was located. Though Confluence lacked access to the off-site wetland, its proximity to the property line made it possible to observe the dominant wetland characteristics and complete a conservative rating.

According to the Cowardin classification system (FGDC 2013), this wetland contains an emergent fringe with an area of open water (palustrine unconsolidated bottom). Based on site observations and a review of historical aerial imagery, the wetland was likely created as a livestock pond (Netronline 2022). The closest edge of the off-site wetland is approximately 35 feet north of the property boundary. According to the 2014 Wetland Rating System (Hruby 2014), the off-site wetland was conservatively rated as a Category IV wetland, with a water quality score of 7 , hydrology score of 4 , and a habitat score of 3 .

### 3.4 Fish and Wildlife Habitat Conservation Areas

Per TCC 24.03, Thurston County defines fish and wildlife conservation areas (FWHCAs) as areas that serve a critical role in sustaining needed habitats and species for the functional integrity of the ecosystem, and which, if altered, may reduce the likelihood that the species will persist over the long term. These areas may include, but are not limited to, rare or vulnerable ecological systems, communities, and habitat or habitat elements including seasonal ranges, breeding habitat, winter range, and movement corridors; and areas with high relative population density or species richness. These also include locally important habitats and species. Confluence did not identify any streams or other FWHCAs on the subject property.

### 4.0 REGULATORY IMPLICATIONS

Per TCC 24.30.045, the county specifies wetland buffer widths for both habitat and water quality protection. The larger of the two buffer widths is the designated buffer width for the wetland. The overall rating of the wetland does not factor into the assigned buffer width. According to TCC 24.30.045, the following standard buffers apply:

- Wetland A has a habitat score of 4 and a water quality score of 8 . The wetland does not meet the criteria associated with the water quality buffers and therefore the habitat buffer width of 140 feet applies.
- The off-site wetland was conservatively rated with a habitat score of 3 and a water quality score of 7 . While the wetland meets the criteria for the 50 -foot water quality buffer, the habitat buffer of 100 feet is larger and therefore represents the standard buffer. Since the wetland is approximately 35 feet away, the buffer of the off-site wetland encroaches a maximum of 65 feet onto the property.


### 5.0 BUFFER IMPACT AVOIDANCE

The project proposes to use buffer reconfiguration to avoid wetland buffer impacts. A total of 25,400 square feet of wetland buffer would be reduced on the east side of Wetland A, and the same quantity of wetland buffer would be added west of Wetland A. Per TCC 24.30.045, the county allows for reconfiguration of wetland buffers if several criteria are met. The criteria and the proposed project's satisfaction of the criteria are described below:

1. The proposed use cannot be accommodated on the site without the reconfiguration of the buffer.

The project proposes to subdivide the property for residential development. Subdivision would be significantly limited without reconfiguration of the buffer of Wetland A due to the zeetland's central location on the property.
2. The scale, design, or orientation of the proposed land use has been adjusted to the extent practical to minimize buffer alteration.

The design of the proposed subdivision has been adjusted to the extent practical to minimize buffer alteration.
3. Demonstration that the wetland and/or buffer contains variations in sensitivity due to existing physical characteristics (e.g., variations in topography, soils, vegetation, or wildlife usage), and that the wetland functions would benefit from a wider buffer in places, and would not be adversely impacted by a narrower buffer in other places.

A portion of the proposed buffer reduction area is currently in agricultural use and the remainder in a forested condition. The proposed addition area is entirely forested with a healthy understory and therefore will provide greater buffer function than the proposed reduction area.
4. If the wetland has a wildlife habitat score of five or more points under Ecology's Washington State Wetland Rating System for Western Washington, the applicant shall submit a habitat assessment demonstrating that wildlife habitat will not be significantly diminished and that documented habitat-sustaining priority or locally important wildlife species (see Section 24.25 .065 ) will not be affected.

The habitat score for Wetland $A$ is 4 , meaning a habitat assessment is not necessary.
5. The reduction in buffer width will occur where it will have the least potential impact on the wetland and buffer functions. Area will be added to portions of the buffer where it would most benefit wetland and buffer functions. The reconfigured buffer shall maintain all wetland functions.

As mentioned above under criteria \#3, a portion of the proposed buffer reduction area is currently in agricultural use, which provides limited buffer function. The proposed addition area is entirely forested with a healthy native understory. Therefore, the proposed addition area provides improved buffer function.
6. Any landscaped area shall extend no more than fifteen feet from the edge of the structure's footprint (outside wall at the foundation) toward the wetland if the buffer width reduction allows the landscaped area to intrude into the area that was formerly buffer.

Proposed landscaping will not extend more than 15 feet from the edge of the structures' footprints.
7. The reconfigured buffer shall be no less than one hundred feet wide at any point, or no less than seventy-five percent of the standard buffer, whichever is more. The reconfigured buffer shall contain the same square footage as the standard buffer. It shall not exceed one hundred percent of square footage of the standard buffer, as modified pursuant to TCC 24.30.050(B) or 24.30.055, without the landowner's consent.

The proposed reconfigured buffer will be no less than 100 feet wide at any point and will result in the same overall square footage as that of the standard buffer.
8. The reconfiguration is accomplished within the project site boundaries or in an abutting conservation easement or tract approved by the county that protects the buffer from alteration, except as provided for in this section.

The proposed reconfiguration will occur within the property boundary.
Figure 3 shows the wetlands and their standard buffers along with the proposed wetland buffer reduction and addition areas. Figure 4 shows the wetlands and the proposed buffer reconfiguration.


2000 24 ${ }^{\text {th }}$ Avenue NW Critical Areas Study

Figure 4. Wetlands and proposed buffer reconfiguration

### 6.0 REFERENCES

Corps (U.S. Army Corps of Engineers). 1987. Corps of Engineers wetlands delineation manual. Corps Environmental Laboratory, Waterways Experiment Station, Vicksburg, Mississippi. Technical Report Y-87-1.

Corps. 2010. Regional supplement to the Corps of Engineers wetland delineation manual: western mountains, valleys, and coast region. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. ERDC/EL TR-08-13.

Corps. 2020. National wetland plant list, version 3.5 [online document]. Corps Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. Available at: https://wetland-plants.sec.usace.army.mil/ nwpl_static/v34/home/home.html.

FGDC (Federal Geographic Data Committee). 2013. Classification of wetlands and deepwater habitats of the United States. Second Edition. Wetlands Subcommittee, Federal Data Committee and U.S. Fish and Wildlife Service, Publication FGDC-STD-004-2013, Washington, D.C.

Hruby, T. 2014. Washington State wetland rating system for western Washington, 2014 update. Washington State Department of Ecology, Olympia. Publication \# 14-06-029.

Netronline. 2022. Historical aerials. Available at: https://www.historicaerials.com/viewer (accessed on November 9, 2022).

NRCS (Natural Resources Conservation Service). 2022a. Web soil survey [online database]. U.S. Department of Agriculture, NRCS, Soil Science Division, Washington D.C. Available at: http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm (accessed on November 7, 2022).

NRCS. 2022b. The PLANTS database [online database]. U.S. Department of Agriculture, NRCS, National Plant Data Team, Greensboro, North Carolina. Available at: https://plants.sc.egov.usda.gov/java/ (accessed on November 7, 2022).

Thurston County. 2022. Thurston County - show me everything map [online database]. Available at: https://map.co.thurston.wa.us/Html5Viewer/Index.html?viewer=uMap.Main (accessed on November 8, 2022).

USFWS (U.S. Fish and Wildlife Service). 2022. National wetlands inventory wetlands mapper [online database]. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. Available at: https://www.fws.gov/wetlands/Data/Mapper.html (accessed on November 7, 2022).

WDFW (Washington Department of Fish and Wildlife). 2022a. SalmonScape interactive mapping [online database]. Washington Department of Fish and Wildlife, Olympia, Washington. Available at: http://apps.wdfw.wa.gov/salmonscape/map.html (accessed on November 7, 2022).

WDFW. 2022b. PHS on the web interactive mapping [online database]. Washington Department of Fish and Wildlife Habitat Program, Olympia, Washington. Available at: https://geodataservices.wdfw.wa.gov/hp/phs/ (accessed on November 7, 2022).

WDNR (Washington Department of Natural Resources). 2022a. Forest practices application mapping tool. Olympia, Washington. Available at: https://fpamt.dnr.wa.gov/default.aspx\# (accessed on November 7, 2022).

WDNR. 2022b. Wetlands of high conservation value map viewer. Olympia, Washington. Available at: https://www.dnr.wa.gov/NHPwetlandviewer (accessed on November 7, 2022).

# Appendix A <br> GIS Database Search Results 



The information included on this map has been compiled by Thurston County staff from a variety of sources and is subject to change without notice. Additional elements may be present in $r_{1}$ align. The boundaries depicted by these datasets are approximate. This document is not intended for use as a survey product. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH A align. The boundaries depicted by these datasets are approximate. This document is not intended for use as a survey product. ALL DATA A A impled, as to accuracy, completeness, timeliness, or rights to the use of such information. In no event shall Thurston County be liable for direct, indirect, incidental, consequential, special, o implied, as to accuracy, completeness, timeliness, or rights to the use of such information. In no event shall Thurston County be liable for direct, indirect, incidental, consequential, special, o
real or anticipated, resulting from the use, misuse or reliance of the information contained on this map. If any portion of this map or disclaimer is missing or altered, Thurston County remove: real or anticipated, resulting from the use, misuse or reliance of the information contained on this map. If any portion of this map or disclaimer is missing or altered, Thurston County remove:
burden for determining fitness for use lies entirely with the user and the user is solely responsible for understanding the accuracy limitation of the information contained in this map. Authoriz'

$=$

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the
base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the

Soil Map-Thurston County Area, Washington


## Map Unit Legend

| Map Unit Symbol | Map Unit Name | Acres in AOI | Percent of AOI |
| :--- | :--- | ---: | ---: |
| 2 | Alderwood gravelly sandy <br> loam, 8 to 15 percent slopes | 9.9 | $86.4 \%$ |
| 3 | Alderwood gravelly sandy <br> loam, 15 to 30 percent <br> slopes | 1.6 | $13.6 \%$ |
| Totals for Area of Interest |  | $\mathbf{1 1 . 4}$ | $\mathbf{1 0 0 . 0 \%}$ |

## 



Report Date: 11/07/2022, Parcel ID: $\underline{09750029001}$
PHS Species/Habitats Overview:

| Occurence Name | Federal Status | State Status | Sensitive Location |
| :--- | :--- | :--- | :--- |
| Yuma myotis | N/A | N/A | Yes |
| Little Brown Bat | N/A | N/A | Yes |
| Big brown bat | N/A | N/A | Yes |

PHS Species/Habitats Details:

| Yuma myotis | Myotis yumanensis |
| :--- | :--- |
| Scientific Name | This polygon mask represents one or more records of the above <br> species or habitat occurrence. Contact PHS Data Release (360-902- <br> 2543) for obtaining information about masked sensitive species and <br> habitats. |
| Fotes | N/A |
| Federal Status | N/A |
| State Status | PHS Listed Occurrence |
| PHS Listing Status | Y |
| Sensitive | N |
| SGCN | TOWNSHIP |
| Display Resolution | http://wdfw.wa.gov/publications/pub.php?id=00605 |
| ManagementRecommendations |  |

## Litile Brown Bat

| Scientific Name | Myotis lucifugus |
| :--- | :--- |
| Notes | This polygon mask represents one or more records of the above <br> species or habitat occurrence. Contact PHS Data Release (360-902- <br> $2543)$ for obtaining information about masked sensitive species and <br> habitats. |
| Federal Status | N/A |
| State Status | N/A |
| PHS Listing Status | PHS Listed Occurrence |
| Sensitive | Y |
| SGCN | N |
| Display Resolution | TOWNSHIP |
| ManagementRecommendations | $\underline{\text { http://wdfw.wa.gov/publications/pub.php? id }=00605}$ |

Big brown bat

| Scientific Name | Eptesicus fuscus |
| :--- | :--- |
| Notes | This polygon mask represents one or more records of the above <br> species or habitat occurrence. Contact PHS Data Release (360-902- <br> 2543) for obtaining information about masked sensitive species and <br> habitats. |
| Federal Status | N/A |
| State Status | N/A |
| PHS Listing Status | PHS Listed Occurrence |
| Sensitive | Y |
| SGCN | N |
| Display Resolution | TOWNSHIP |
| ManagementRecommendations | http://wdfw.wa.gov/publications/pub.php?id=00605 |

DISCLAIMER. This report includes information that the Washington Department of Fish and Wildlife (WDFW) maintains in a central computer database. It is not an attempt to provide you with an official agency response as to the impacts of your project on fish and wildlife. This information only documents the location of fish and wildlife resources to the best of our knowledge. It is not a complete inventory and it is important to note that fish and wildlife resources may occur in areas not currently known to WDFW biologists, or in areas for which comprehensive surveys have not been conducted. Site specific surveys are frequently necesssary to rule out the presence of priority resources. Locations of fish and wildlife resources are subject to variation caused by disturbance, changes in season and weather, and other factors. WDFW does not recommend using reports more than six months old.

## SalmonScape



Forest Practices Activity Map - Application \#


$$
\begin{aligned}
& \begin{array}{ll} 
& \text { Tribal Cultural Resource } \\
\text { Contacts }
\end{array} \\
& \text { Legend }
\end{aligned}
$$



## Appendix B Wetland Delineation Methods

# 2000 24 $^{\text {th }}$ Avenue NW Critical Areas Study: Appendix B CONFLUENCE ENVIRONMENTAL COMPANY WETLAND DELINEATION METHODS 

Prepared by: Confluence Environmental Company 2022

## TABLE OF CONTENTS

1.0 METHODOLOGIES. ..... 1
2.0 WETLAND CRITERIA ..... ERRORI BOOKMARK NOT DEFINED.
2.1 Hydrophytic Vegetation. ..... 2
2.2 Hydric Soils .....  3
2.3 Hydrology ..... 4
3.0 REFERENCES .....  4

This appendix describes the methods used to confirm the presence or absence of wetlands in a study area.

### 1.0 METHODOLOGIES

Confluence delineates the boundaries of wetlands using the "Routine Determinations for Areas Less Than 5 Acres in Size" method described by the U.S. Army Corps of Engineers (Corps) in the Corps of Engineers Wetlands Delineation Manual (Delineation Manual; Corps 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Regional Supplement; Corps 2010). The Regional Supplement was part of a nationwide effort to address regional wetland characteristics and improve the accuracy and efficiency of wetland-delineation procedures. The Regional Supplement uses the best available science to address regional differences in climate, geology, soils, hydrology, and plant and animal communities that cannot be addressed in a single national document, such as the Delineation Manual. The Regional Supplement was designed for use with the 1987 Delineation Manual and all subsequent versions. Where differences in the 2 documents occur, the Regional Supplement takes precedence over the 1987 Delineation Manual (Corps 2010). The Regional Supplement was developed to clarify the indicators of hydrophytic vegetation, hydric soils, and wetland hydrology found in the region (these indicators are discussed in detail in Section 2.0). It is important to note that areas that may have been determined to be wetlands under the 1987 Delineation Manual may not be determined to be wetlands under the Regional Supplement, and vice versa.

Confluence uses the PLANTS Database (NRCS 2022) for scientific names and the 2020 National Wetland Plant List (Corps 2020) to determine the wetland indicator status of plants. Wetlands are classified using the Cowardin Classification System (FGDC 2013). Confluence determines the wetland rating using Washington State Department of Ecology's Wetland Rating System for Western Washington (Hruby 2014). The National Wetland Inventory is also researched to determine if wetlands have previously been identified on the property (USFWS 2022).

The locations of test plots, soil cores, and wetland edges on a project property are recorded using a differential Global Positioning System with sub-meter accuracy. Delineated and surveyed wetland boundaries are subject to verification and approval by jurisdictional agencies.

### 2.0 WETLAND CRITERIA

There is specific technical language that applies to the study of wetlands. This section briefly explains the language Confluence uses in its wetland delineation reports.

The identification of wetlands is based on 3 criteria: hydrophytic vegetation, hydric soils, and hydrology. Each criterion has a number of indicators that can be used to determine whether the criterion has been met. The Corps, which is the federal authority on the regulation of wetlands,
has developed the guidance and the data form that are the standards used in all wetland determinations. The information presented below is based on their Delineation Manual (Corps 1987) and Regional Supplement (Corps 2010).

In order to confirm the presence of a wetland, data are collected from representative test plots chosen within and outside of a potential wetland. The test plots are representative of particular vegetative, topographic, and hydrologic features in the vicinity. Within the test plots particular data (see sections below) about vegetation, soils, and hydrology are collected to determine whether wetland characteristics are present. Plots that meet all 3 wetland criteria are wetland plots; plots that do not meet all 3 wetland criteria are upland (i.e., nonwetland) plots. The test plots (along with topographic and vegetative shifts) then inform the delineation of wetland boundaries.

### 2.1 Hydrophytic Vegetation

Vegetation is often the first visual cue that an area is a wetland. Similarly, vegetation often also signals the shift from wetland to upland. The question regarding plants to be answered when performing a wetland delineation is, "Is the vegetation hydrophytic?" That is, is the vegetation of the variety that is adapted to live in wetter-than-average conditions? To determine the answer, there are a few resources and steps to follow. First, the indicator status for each plant present in the test plot is determined from the National Wetland Plant List (Corps 2020). The indicator status is a continuum from almost exclusively occurring in wetlands (obligate wetland plants, or OBL) to almost never occurring in wetlands (obligate upland plants, or UPL). The middle ground between those 2 extremes is known as a facultative plant (or FAC), which is found equally in wetland and upland environments. The FAC category has 2 further gradations: facultative upland plants (FACU), which are plants that are usually found in uplands, and facultative wetland plants (FACW), which are plants that are usually found in wetlands.

After the status of each plant species in the test plot has been determined, the hydrophytic vegetation indicators can be applied. The application of the indicators is performed sequentially, and once one is "passed," the box for hydrophytic vegetation is checked, and the process continues to the next criterion. The first hydrophytic vegetation indicator is the "Rapid Test," which means with a quick visual survey, all the plants in the test plot are either OBL or FACW. The second test is the "Dominance Test." For the Dominance Test, the total number of dominant species in the test plot is divided by the number of species that are OBL, FACW, or FAC. The resulting percentage must be greater than 50 to pass this test. The third test is the "Prevalence Index." The Prevalence Index is a weighted average of the absolute cover of all the plant species present in the plot, regardless of dominance. There are also 2 other, less common, indicators: morphological adaptations (e.g., buttressed trunks) and nonvascular plant species (e.g., sphagnum moss).

### 2.2 Hydric Soils

The soils tell the story about the presence of water over time. The National Technical Committee defines a hydric soil as, "A soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part" (USDA Soil Conservation Service 1994). The question to be answered here is, "Has water been present long enough and recently enough to form hydric soils?" In order to examine the soil characteristics, a test pit must be dug, usually to about 18 inches. A sliver of soil from the test pit is extracted with a shovel (i.e., the soil profile) to examine the layers. The thickness, color, texture, redoximorphic features, and any other interesting information about each layer are observed and recorded. Those features are described more fully below.

- Thickness. Layers are measured to the nearest inch. Usually, each soil profile has at least 2 layers.
- Color. Color is determined by comparison to a color chart. The industry standard is the Munsell Soil-Color Chart, which assigns each color a designation for hue, value, and chroma (e.g., $10 Y \mathrm{YR} 3 / 2$, where $10 \mathrm{YR}=$ hue, $3=$ value, and $2=$ chroma).
- Texture. The precision of texture description for the

More Hydric Soils Definitions (adapted from Corps 2010)

Matrix: the dominant soil volume in a given soil layer
Depleted Matrix: the volume of a soil horizon in which soil processes have removed or transformed iron, creating colors of low chroma and high value, specifically:

- Value $\geq 5$, chroma $=1$, with or without redoximorphic features
- Value $\geq 6$, chroma $=1$ or 2 , with or without redoximorphic features
- Value of 4 or 5 , chroma $=2, \geq 2 \%$ distinct or prominent redoximorphic features
- Value of 4 , chroma $=1, \geq 2 \%$
distinct or prominent
redoximorphic features
Distinct: readily seen, but contrasting* moderately with comparison color
Prominent: readily seen and contrasting* greatly with comparison color
*See Corps 2010, Table A1, page 130 for full key on contrast determinations. purpose of wetland delineation is at a general scale. The Washington State University texture chart (Cogger 2010) is often used, but the delineator just needs to determine if the soil is sandy or loamy/clayey.
" Redoximorphic Features. The most common redoximorphic features are concentrations or depletions of iron in the soil matrix. Concentrations occur as red or yellow deposits, and depletions occur as grayish deposits.

When the soil profile is fully described, it can be determined whether any of the layers meets a hydric soil indicator. The presence of any hydric soil indicator signifies a hydric soil, although a soil may be hydric and not meet any of these indicators. There are 19 hydric soil indicators in our region, 2 of which were observed at the site (Corps 2010). Additional hydric soil terminology definitions are in the sidebar.

- A11-Depleted Below Dark Surface. A soil layer with a depleted matrix, with $60 \%$ or more chroma of $\leq 2$, which starts within 12 inches of the surface and is at least 6 inches thick. Layers above the depleted layer must have a value $\leq 3$, and a chroma $\leq 2$.
- F6-Redox Dark Surface. A soil layer at least 4 inches thick, entirely within the upper 12 inches of the soil with:
- matrix value $\leq 3$, chroma $\leq 1$, and $2 \%$ or more distinct or prominent redoximorphic concentrations, or
- matrix value $\leq 3$, chroma $\leq 2$, and $5 \%$ or more distinct or prominent redoximorphic concentrations.


### 2.3 Hydrology

Wetland hydrology is the broadest criterion and has to do with signs of saturation and inundation in the test plot. While hydrophytic vegetation and hydric soils are the result of hydrology, they remain even during the dry season, whereas wetland hydrology can be less apparent or absent during the dry season. The hydrology indicators are broad enough to encompass characteristics that may be present even during the dry season. Hydrology indicators are in 4 groups:

- Group A is based on direct observation of surface or ground water.
- Group B consists of evidence that the site is subject to inundation.
- Group C consists of other evidence that soil is or was saturated.
- Group D consists of landscape, vegetation, and soil characteristics indicating contemporary wet conditions.

The indicators are further divided into 2 categories: primary and secondary. A test plot must have either 1 primary or 2 secondary indicators to pass the hydrology criterion. Primary and secondary indicators observed during this delineation are recorded on the wetland delineation data forms in Appendix C.

### 3.0 REFERENCES

Cogger, C.G. 2010. Estimating soil texture flowchart. Washington State University Puyallup Research Center, Puyallup, Washington.

Corps (U.S. Army Corps of Engineers). 1987. Corps of Engineers Wetlands Delineation Manual. Corps Environmental Laboratory, Waterways Experiment Station, Technical Report Y-87-1, Vicksburg, Mississippi.

Corps. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region. U.S. Army Engineer Research and Development Center, ERDC/EL TR-08-13, Vicksburg, Mississippi.

Corps. 2020. National wetland plant list, version 3.5 [online document]. Corps Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. Available at: https://wetland-plants.sec.usace.army.mil/ nwpl_static/v34/home/home.html.

FGDC (Federal Geographic Data Committee). 2013. Classification of wetlands and deepwater habitats of the United States. Second Edition. Wetlands Subcommittee, Federal Data Committee and U.S. Fish and Wildlife Service, Publication FGDC-STD-004-2013, Washington, D.C.

Hruby, T. 2014. Washington State wetland rating system for western Washington, 2014 update. Washington State Department of Ecology, Publication \#14-06-029, Olympia, Washington.

NRCS (Natural Resources Conservation Service). 2022. The PLANTS database [online database].
U.S. Department of Agriculture, NRCS, National Plant Data Team, Greensboro, North Carolina. Available at: https://plants.sc.egov.usda.gov/java/ (accessed on November 7, 2022).

USDA (U.S. Department of Agriculture) Soil Conservation Service. 1994. Changes in hydric soils of the United States. Federal Register 59(133): 35680-35681, July 13, 1994.

USFWS (U.S. Fish and Wildlife Service). 2022. National wetlands inventory wetlands mapper [online database]. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. Available at: https://www.fws.gov/wetlands/Data/Mapper.html (accessed on November 7, 2022).

## Appendix C <br> Wetland Delineation Data Forms

## WETLAND DETERMINATION DATA FORM－Western Mountains，Valleys，and Coast Region

Propectsite LIOO 24＂Fro nNe）
 Appltantowner 1 I Toe
Investigators）上より L CL Section Township Range $557 T 11 N R 2 \mathrm{~N}$ Investigators）上卜丿1
$\qquad$
$\qquad$ Local rene（concave convex nones Landform（hulslope terrace atc） Lat $4+26+5$ －Long $1+2 \cdot \frac{7}{4}+\frac{1}{4}$ an at
 Are climatic／hydrologic conditions on the site typical for this time of year？Yes $\qquad$ No 1 （if no explain in Remarks）

Are Vegetation $\qquad$ Sql $\qquad$ or Hydrology $\qquad$ significantly disturbed Are＂Normal Circumstances＂present＂Yes No进 Are Vegetation $\qquad$ Soil $\qquad$ or Hydrology $\qquad$ naturally problematic？
（If needed，explain any answers in Remarks ．
SUMMARY OF FINDINGS－Attach site map showing sampling point locations，transects，important features，etc


VEGETATION－Use scientific names of plants．



## Hydrophytic Vegetation Indicators

－ 1 －Rapid Test for Hydrophytic Vegelahom
$1 / 2$ ．Dominance Test is $350 \%$
－3．Prevalence Index is $\leqslant 30$
－4．Morphological Adaptations（Provide supporting data in Remarks or on a separate sheet
＿5．Wetland Non Vascular Plants
＿．Problematic Hydrophytuc Vegetation＇（Explain）
＇Indicators of hydric sol and wetland hydrology must be present untess disturbed or problematic．

Hydrophytic
Vegetation
Present？


Remarks

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicalors.)
Depth
(inches)

## HYDROLOGY

Wetiand Hydrology Indicators:

Primary indicators (minimum of one required, check all that anoly)

```
            Surlace Water (A1)
```

            High Water Table (A2)
    Saturation (A3)

- Water Marks (B1)
_ Sediment Deposits (B2)
— Drit Deposits (B3)
- Algal Mat or Crust (B4)
_ Iron Deposits (B5)
- Surface Soil Cracks (B6)
_ Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (88)
_-Water-Staned Leaves (B9) (except MLRA 1, 2, 4A, and 4B)
$\qquad$
- Aquatic Invertebrates (813)
- Hydrogen Sulfide Odor (C1)
$\angle$ Oxidized Rhzospheres along Living Roots (C3)
_. Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled Solls (C6)
__ Stunted or Stressed Plants (D1) (LRR A)
- Other (Explain in Remarks)

Secondary indicalors 12 or more required
_ Water-Staned Leaves (89) (MLRA 1, 2

## 4 A , and 48 )

-Dranage Pattems (B10)
_ Ory-Season Water Table (C2)

- Saturation visible on Aenal Imagery (C9)
_- Geomorphic Position (D2)
_ Shallow Aquitard (D3)
FFAC-Neutral Test (D5)
_ Raised Ant Mounds (D6) (LRR A)
__ Frost-Heave Hummocks (D7)

Field Observations:


Describe Recorded Data (stream gauge, monitoring well, aenal photos previous inspections) if available

Remarks

## WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region



SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.


VEGETATION - Use scientific names of plants.


SOIL
Profile Description: (Doscribe to the depth needed to document the indicator or confirm the absence of indicators.)
Depth
(inches)
Color (moisl)

Remarks

## HYDROLOGY



WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region


SUMIMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.


## VEGETATION - Use scientific names of plants.



SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators)
Depth
(inchen)

Remarks

## HYDROLOGY

## Wetland Hydrology Indicators:

Primary Indicators (minimum of one required, check all that aoply)
Leaves (B9) (except

Secondary Indicators (2 or more required)

- Surface Water (A1)
- Water Stained Leaves (B9) (except
- Water-Stained Leaves (B9) (MLRA 1, 2,

High Water rable (A2)

$$
\text { MLRA } 1,2,4 \mathrm{~A} \text {, and } 4 \mathrm{~B})
$$

## 4 A , and 4 B )

Saturation (A3)- Sall Crust (B11)
_ Drainage Pattems (B10)
2 Water Marks (B1)
- Aquatic Invertebrates (B13)
_ Dry-Season Water Table (C2)
- Sediment Deposits (B2)
- Drif Deposits (日3)
_ Hydrogen Sulfide Odor (C1)
- Saturation Visible on Aenal Imagery (C9)
- Algal Mat or Crust (B4)
- Oxidized Rhizospheres along Living Roots (C3) $\qquad$ Geomorphic Position (D2)
__ Iron Deposits (85)
_ Presence of Reduced Iron (C4)
Shallow Aquitard (D3)
- Recent Iron Reduction in Tiled Soils (C6)
_ . Surface Soll Cracks (Bë) $\qquad$ Slunted or Stressed Plants (D1) (LRR A)
Inundation Visible on Aerial Imagery ( 8 7) $\qquad$ Other (Explain in Remarks)
_ FAC-Neutral Test (D5)
- Sparsely Vogetated Concave Surface (A8)

Fleld Observations:
Surface Water Present? Water Table Present? Ssturation Present?

| Yes | No | Depth (inches) |
| :---: | :---: | :---: |
| Yes | No L- | Depth (inches): |
| Yes | No | Depth (inches) |

 (includes capillary fringe). Describe Recorded Dala (stream gange moniloring well aeral pholos previous inspections), if available

## Remarks

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region
 SUMIMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? <br> Hydric Soll Present? <br> Wotland Hydrology Present? |  | Is the Sampled Area within a Wetland? | Yes | $\text { No } 1$ |
| :---: | :---: | :---: | :---: | :---: |
| Remarks <br> UMUually cowple | $a m / d r y$ ays pelol | $\begin{aligned} & \text { to be } \\ & \text { o sik. } \end{aligned}$ | $\int j$ | stateo |

## VEGETATION - Use scientific names of plants.



SOIL


## HYDROLOGY

Wetland Hydrology Indicators

Primary indicators (minimum of one required, check, all that apoly)Surface Water (A1)
Water-Stained Leaves (B9) (except
MLRA 1, 2, 4A, and 4B)
_ High Water Table (A2)
__ Salt Crust (B11)

- Aquatic Invertebrates (B13)
_ Hydrogen Sulfide Odor (C1)
Secondary Indicators (2 or more required)

Oxidized Rhizospheres along Living Roots (C3)
_- Presence of Reduced iron (C4)
__ Recent Iron Reduction in Thled Solls (C6)
_. Stunted or Stressed Plants (01) (LRR A)
_. Other (Explain in Remarks)
_- Water-Stained Leaves (B9) (MLRA 1, 2.

## $4 A$, and 4B)

- Saturation (A3)
- Water Marks (日1)
- Sediment Deposits (B2)
——Drin Deposits (B3)
_ Algal Mat or Crust (B4)
_ Iron Deposits (B5)
- Surface Soil Cracks (B6)
_ inundation Visibie on Aenal Imagery ( $\mathrm{B}^{7}$ )
- Sparsely Vegetates Concave Surface (B8)

Field Observations:
Surface Water Present
Water Table Present?
Saturation Present?
tincludes cagula y tima
Describe Recorded Deta, stieam quage mathonty well aenal photos previous inspections) If availabie

## Remarks

## Appendix D <br> Wetland Rating Forms

$\qquad$

# RATING SUMMARY - Western Washington 

| Name of wetland (or ID \#): Wetland A |  | Date of site visit: | 0/25/2022 |
| :---: | :---: | :---: | :---: |
| Rated by K. McArthur and N. Dietsch | Trained by Ecology? $\square$ Yes $\square$ No | Date of training | Mar-21 |
| HGM Class used for rating Depressional \& Flats | Wetland has multiple HGM classes? $\square$ Yes $\square$ No |  |  |
| NOTE: Form is not complete with out the figures requested (figures can be combined). Source of base aerial photo/map |  |  |  |

OVERALL WETLAND CATEGORY $\qquad$ III (based on functions $\square$ or special characteristics $\square$ )

## 1. Category of wetland based on FUNCTIONS

Category I - Total score $=23-27$
Category II - Total score $=20-22$
$\square \mathbf{X}$ Category III - Total score $=16-19$
Category IV - Total score $=9-15$

| FUNCTION | Improving <br> Water Quality | Hydrologic | Habitat |
| :--- | :---: | :---: | :---: | :---: |
| List appropriate rating $(H, M, L)$ |  |  |  |
| Site Potential | H | M | M |


| Score for each <br> function based <br> on three <br> ratings <br> (order of ratings <br> is not <br> important ) <br>  <br> $9=H, H, H$ <br> $8=H, H, M$ <br> $7=H, H, L$ <br> 7 |
| :--- |
| $6=H, M, M$ |
| $6=H, M, L$ |
| $6=M, M, M$ |
| $5=H, L, L$ |
| $5=M, M, L$ |
| $4=M, L, L$ |
| $3=L, L, L$ |

2. Category based on SPECIAL CHARACTERISTICS of wetland

| CHARACTERISTIC | Category |
| :--- | :---: |
| Estuarine |  |
| Wetland of High Conservation Value |  |
| Bog |  |
| Mature Forest |  |
| Old Growth Forest |  |
| Coastal Lagoon |  |
| Interdunal | X |
| None of the above |  |

$\qquad$ A

## Maps and Figures required to answer questions correctly for Western Washington

## Depressional Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :---: |
| Cowardin plant classes | D 1.3, H 1.1, H 1.4 | 1 |
| Hydroperiods | D 1.4, H 1.2 | 2 |
| Location of outlet (can be added to map of hydroperiods ) | D 1.1, D 4.1 | N/A |
| Boundary of area within 150 ft of the wetland (can be added to another figure ) | D 2.2, D 5.2 | 1 |
| Map of the contributing basin | D 4.3, D 5.3 | 3 |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | H 2.1, H 2.2, H 2.3 | 4 |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | D 3.1, D 3.2 | 5 |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | D 3.3 | 6 |

## Riverine Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :--- |
| Cowardin plant classes | H 1.1, H 1.4 |  |
| Hydroperiods | H 1.2 |  |
| Ponded depressions | R 1.1 |  |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | R 2.4 | R 1.2, R 4.2 |
| Plant cover of trees, shrubs, and herbaceous plants | R 4.1 |  |
| Width of unit vs. width of stream (can be added to another figure ) | R 2.2, R 2.3, R 5.2 |  |
| Map of the contributing basin | H 2.1, H 2.2, H 2.3 |  |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | R 3.1 |  |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | R 3.2, R 3.3 |  |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | l |  |

Lake Fringe Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :--- |
| Cowardin plant classes | L 1.1, L 4.1, H 1.1, H 1.4 |  |
| Plant cover of trees, shrubs, and herbaceous plants | L 1.2 |  |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | L 2.2 |  |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habita | $\mathrm{H} 2.1, \mathrm{H} 2.2, \mathrm{H} 2.3$ |  |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | L 3.1, L 3.2 |  |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | L 3.3 |  |

## Slope Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :--- |
| Cowardin plant classes | H 1.1, H 1.4 |  |
| Hydroperiods | H 1.2 |  |
| Plant cover of dense trees, shrubs, and herbaceous plants | S 1.3 |  |
| Plant cover of dense, rigid trees, shrubs, and herbaceous plants <br> (can be added to another figure ) | S 4.1 |  |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | S 2.1, S 5.1 |  |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | $\mathrm{H} 2.1, \mathrm{H} \mathrm{2.2,H2.3}$ |  |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | S 3.1, S 3.2 |  |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | S 3.3 |  |

## HGM Classification of Wetland in Western Washington

For questions $1-7$, the criteria described must apply to the entire unit being rated.
If hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

T NO - go to 2
YES - the wetland class is Tidal Fringe - go to 1.1
1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

## NO - Saltwater Tidal Fringe (Estuarine) $\square$ YES - Freshwater Tidal Fringe

 If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is an Estuarine wetland and is not scored. This method cannot be used to score functions for estuarine wetlands.2. The entire wetland unit is flat and precipitation is the only source ( $>90 \%$ ) of water to it.

Groundwater and surface water runoff are NOT sources of water to the unit.NO - go to 3
YES - The wetland class is Flats
If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.
3. Does the entire wetland unit meet all of the following criteria?
$\square$ The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac ( 8 ha ) in size;At least $30 \%$ of the open water area is deeper than $6.6 \mathrm{ft}(2 \mathrm{~m})$.NO - go to 4
YES - The wetland class is Lake Fringe (Lacustrine Fringe)
4. Does the entire wetland unit meet all of the following criteria?
$\square$ The wetland is on a slope (slope can be very gradual),The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.The water leaves the wetland without being impounded.

NO - go to 5
$\square$ YES - The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually $<3 \mathrm{ft}$ diameter and less than 1 ft deep).
5. Does the entire wetland unit meet all of the following criteria?
$\square$ The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,The overbank flooding occurs at least once every 2 years.
NO - go to 6
YES - The wetland class is Riverine
NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding.
$\qquad$ A
6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? This means that any outlet, if present, is higher than the interior of the wetland.

```
NO - go to 7
```

$\checkmark$ YES - The wetland class is Depressional
7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.NO - go to 8
$\square$ YES - The wetland class is Depressional
8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents $10 \%$ or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than $10 \%$ of the unit; classify the wetland using the class that represents more than $90 \%$ of the total area.

| HGM classes within the wetland unit <br> being rated | HGM class to <br> use in rating |
| :---: | :---: |
| Slope + Riverine | Riverine |
| Slope + Depressional | Depressional |
| Slope + Lake Fringe | Lake Fringe |
| Depressional + Riverine along stream <br> within boundary of depression | Depressional |
| Depressional + Lake Fringe | Depressional |
| Riverine + Lake Fringe | Riverine |
| Salt Water Tidal Fringe and any other <br> class of freshwater wetland | Treat as <br> ESTUARINE |

If you are still unable to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as Depressional for the rating.

NOTES and FIELD OBSERVATIONS:
$\qquad$

## DEPRESSIONAL AND FLATS WETLANDS

Water Quality Functions - Indicators that the site functions to improve water quality

| D 1.0. |  |
| :---: | :---: |
| D 1.1. Characteristics of surface water outflows from the wetland: <br> Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no outlet). points $=3$ <br> Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet. <br> points $=2$ Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing <br> points $=1$ Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch. <br> points $=1$ | 3 |
| D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions). $\mathrm{Yes}=4 \quad \mathrm{No}=0$ | 0 |
| D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or  <br> Forested Cowardin classes): points $=5$ <br> Wetland has persistent, ungrazed, plants $>95 \%$ of area points $=3$ <br> Wetland has persistent, ungrazed, plants $>1 / 2$ of area points $=1$ <br> Wetland has persistent, ungrazed plants $>1 / 10$ of area points $=0$ <br> Wetland has persistent, ungrazed plants $<\frac{1}{10}$ of area  | 5 |
| D 1.4. Characteristics of seasonal ponding or inundation: <br> This is the area that is ponded for at least 2 months. See description in manual. <br> Area seasonally ponded is $>1 / 2$ total area of wetland <br> points $=4$ <br> Area seasonally ponded is $>1 / 4$ total area of wetland <br> points $=2$ <br> Area seasonally ponded is $<1 / 4$ total area of wetland <br> points $=0$ | 4 |
| Total for D 1 Add the points in the boxes above | 12 |

Rating of Site Potential If score is: $\square \mathbf{1 2 - 1 6 = H \quad \square 6 - 1 1 = M \quad \square 0 - 5 = \mathrm { L } \quad \text { Record the rating on the first page }}$

| D 2.0. Does the landscape have the potential to support the water quality function of the site? |  |  |
| :--- | ---: | :---: |
| D 2.1. Does the wetland unit receive stormwater discharges? | Yes $=1 \quad \mathrm{No}=0$ | 0 |
| D 2.2. Is > 10\% of the area within 150 ft of the wetland in land uses that <br> generate pollutants? | Yes $=1 \quad \mathrm{No}=0$ | 1 |
| D 2.3. Are there septic systems within 250 ft of the wetland? | Yes $=1 \quad \mathrm{No}=0$ | 0 |
| D 2.4. Are there other sources of pollutants coming into the wetland that are <br> not listed in questions D 2.1-D 2.3? <br> Source | Yes $=1 \quad$ No $=0$ | 0 |
| Total for D 2 | Add the points in the boxes above | 1 |

Rating of Landscape Potential If score is: $\square 3$ or $4=\mathrm{H} \square 1$ or $\mathbf{2}=\mathrm{M} \square \mathbf{0}=\mathrm{L}$ Record the rating on the first page


## DEPRESSIONAL AND FLATS WETLANDS

Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradation
D 4.0. Does the site have the potential to reduce flooding and erosion?
D 4.1. Characteristics of surface water outflows from the wetland:
Wetland is a depression or flat depression with no surface water leaving it (no outlet)
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet
Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing
points $=0$

$$
\begin{equation*}
\text { points }=2 \tag{4}
\end{equation*}
$$

points $=1$

D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part.

Marks of ponding are 3 ft or more above the surface or bottom of outlet
Marks of ponding between 2 ft to $<3 \mathrm{ft}$ from surface or bottom of outlet
$\square$ Marks are at least 0.5 ft to $<2 \mathrm{ft}$ from surface or bottom of outlet
$\square$ The wetland is a "headwater" wetland
Wetland is flat but has small depressions on the surface that trap water Marks of ponding less than $0.5 \mathrm{ft}(6 \mathrm{in})$
points $=7$ points $=5 \quad 0$ points $=3$ points $=3$ points $=1$ points $=0$

D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself.
$\square$ The area of the basin is less than 10 times the area of the unit points $=5$ The area of the basin is 10 to 100 times the area of the unit The area of the basin is more than 100 times the area of the unit
$\square$ Entire wetland is in the Flats class
Total for D 4
Add the point in the boxes above
Rating of Site Potential If score is: $\square \mathbf{1 2 - 1 6 = H \quad \square 6 - 1 1 = M \quad \square \mathbf { 0 - 5 } = \mathrm { L } \quad \text { Record the rating on the first page }}$


Rating of Landscape Potential If score is: $\square \mathbf{3 = H} \quad \square \mathbf{1}$ or $\mathbf{2 = M} \quad \square \mathbf{0}=\mathrm{L} \quad$ Record the rating on the first page


## These questions apply to wetlands of all HGM classes.

HABITAT FUNCTIONS - Indicators that site functions to provide important habitat
H 1.0. Does the site have the potential to provide habitat?
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the
Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of $1 / 4$ ac or more than $10 \%$ of the unit if it is smaller than 2.5 ac. Add the number of structures checked.

Aquatic bed
Emergent
4 structures or more: points $=4$
3 structures: points $=2$Scrub-shrub (areas where shrubs have > 30\% cover)
2 structures: points - 1Forested (areas where trees have > 30\% cover) If the unit has a Forested class, check if:

1 structure: points $=0$
$\square$ The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover $20 \%$ within the Forested polygon
H 1.2. Hydroperiods
Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than $10 \%$ of the wetland or $1 / 4$ ac to count (see text for descriptions of hydroperiods).
$\square$ Permanently flooded or inundated
$\square$ Seasonally flooded or inundated $\square$ Occasionally flooded or inundated $\square$ Saturated only

4 or more types present: points $=3$
3 types present: points = 2
2 types present: points = 1
1 types present: points = 0

$$
0
$$

Permanently flowing stream or river in, or adjacent to, the wetlandSeasonally flowing stream in, or adjacent to, the wetlandLake Fringe wetland

2 points
$\square$ Freshwater tidal wetland 2 points

1

1
,
ichness of plant species
H 1.3. Richness of plant species
Count the number of plant species in the wetland that cover at least $10 \mathrm{ft}^{2}$.
Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle

| If you counted: | $>19$ species | points $=2$ <br> p-19 species <br>  <br>  5 species |
| :--- | :--- | :--- | | points $=1$ |
| ---: | :--- |
| points $=0$ |

H 1.4. Interspersion of habitats
Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high.

$\qquad$ A

H 1.5. Special habitat features:
Check the habitat features that are present in the wetland. The number of checks is the number of points.
$\square$ Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long)
$\square$ Standing snags (dbh > 4 in ) within the wetland
$\square$ Undercut banks are present for at least $6.6 \mathrm{ft}(2 \mathrm{~m})$ and/or overhanging plants extends at least $3.3 \mathrm{ft}(1 \mathrm{~m})$ over a stream (or ditch) in, or contiguous with the wetland, for at least $33 \mathrm{ft}(10 \mathrm{~m})$Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)At least $1 / 4$ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians)
$\square$ Invasive plants cover less than $25 \%$ of the wetland area in every stratum of plants (see H 1.1 for list of strata)

| Total for H 1 | Add the points in the boxes above | 8 |
| :--- | :--- | :--- |

Rating of Site Potential If Score is: $\square 15-18=\mathrm{H} \quad \square \mathbf{7 - 1 4 = M \quad \square 0 - 6 = \mathrm { L } \quad \text { Record the rating on the first page }}$


Rating of Landscape Potential If Score is: $\square \mathbf{4 - 6 = H \quad \square 1 - 3 = M \quad \square < 1 = L \quad \text { Record the rating on the first page }}$


Rating of Value If Score is:$2=\mathrm{H}$$0=1$
$\qquad$

## WDFW Priority Habitats

Priority habitats listed by WDFW (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.
http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here:
http://wdfw.wa.gov/conservation/phs/list/
Count how many of the following priority habitats are within $330 \mathrm{ft}(100 \mathrm{~m})$ of the wetland unit: NOTE: This question is independent of the land use between the wetland unit and the priority habitat.
$\square \quad$ Aspen Stands: Pure or mixed stands of aspen greater than 1 ac ( 0.4 ha ).
$\square$ Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report).
$\square$ Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
$\square$ Old-growth/Mature forests: Old-growth west of Cascade crest - Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac ( 20 trees/ha) > 32 in ( 81 cm ) dbh or $>200$ years of age. Mature forests - Stands with average diameters exceeding 21 in ( 53 cm ) dbh; crown cover may be less than 100\%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
$\square$ Oregon White Oak: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (full descriptions in WDFW PHS report p. 158 - see web link above).
$\square$ Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
$\square$ Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (full descriptions in WDFW PHS report p. 161 - see web link above ).
$\square$ Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
$\square$ Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (full descriptions of habitats and the definition of relatively undisturbed are in WDFW report - see web link on previous page ).
$\square$ Caves: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
$\square$ Cliffs: Greater than $25 \mathrm{ft}(7.6 \mathrm{~m})$ high and occurring below 5000 ft elevation.
$\square$ Talus: Homogenous areas of rock rubble ranging in average size 0.5-6.5 ft (0.15-2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
$\square$ Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of $>20 \mathrm{in}(51 \mathrm{~cm})$ in western Washington and are $>6.5 \mathrm{ft}(2 \mathrm{~m})$ in height. Priority logs are $>12$ in $(30 \mathrm{~cm})$ in diameter at the largest end, and $>20 \mathrm{ft}(6 \mathrm{~m})$ long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.
$\qquad$ A

## CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS


$\qquad$ A

## SC 4.0. Forested Wetlands

Does the wetland have at least 1 contiguous acre of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? If you answer YES you will still need to rate the wetland based on its functions.
$\square$ Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in ( 81 cm ) or more.
$\square \quad$ Mature forests (west of the Cascade Crest): Stands where the largest trees are 80-200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding $21 \mathrm{in}(53 \mathrm{~cm})$.

## Yes = Category I $\quad$ V No = Not a forested wetland for this section

SC 5.0. Wetlands in Coastal Lagoons
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?
$\square \quad$ The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks
$\square$ The lagoon in which the wetland is located contains ponded water that is saline or brackish ( $>0.5 \mathrm{ppt}$ ) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom)

Yes - Go to SC $5.1 \quad \square \mathrm{No}=$ Not a wetland in a coastal lagoon
SC 5.1. Does the wetland meet all of the following three conditions?
$\square$ The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than $20 \%$ cover of aggressive, opportunistic plant species (see list of species on p. 100).
$\square$ At least $3 / 4$ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or ungrazed or un-mowed grassland.
$\square$ The wetland is larger than $1 / 10$ ac $\left(4350 \mathrm{ft}^{2}\right)$
$\square$ Yes = Category I $\quad \square$ No = Category II
SC 6.0. Interdunal Wetlands
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions.
In practical terms that means the following geographic areas:
$\square \quad$ Long Beach Peninsula: Lands west of SR 103
Grayland-Westport: Lands west of SR 105
$\square$ Ocean Shores-Copalis: Lands west of SR 115 and SR 109
$\square$ Yes - Go to SC $6.1 \quad \square$ No = Not an interdunal wetland for rating
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates $\mathrm{H}, \mathrm{H}, \mathrm{H}$ or $\mathrm{H}, \mathrm{H}, \mathrm{M}$ for the three aspects of function)?
$\square$ Yes = Category INo - Go to SC 6.2
SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? $\square$ Yes = Category II
$\square$ No - Go to SC 6.3
SC 6.3. Is the unit between 0.1 and 1 ac , or is it in a mosaic of wetlands that is between 0.1 and 1 ac ?

$$
\square \text { Yes = Category III } \quad \square \text { No = Category IV }
$$

Category of wetland based on Special Characteristics
If you answered No for all types, enter "Not Applicable" on Summary Form




(p) $\varepsilon 0 \varepsilon \forall O M$
November 7, 2022
WQ Improvement Projects
Approved
In Development
Subbasins (12 digit HUCs)
HUC boundary


WQA TMDLs

# RATING SUMMARY - Western Washington 

Name of wetland (or ID \#): Off-Site Wetland
Rated by K. McArthur and N. Dietsch
Trained by Ecology? $\boxtimes$ Yes $\square$ No
Date of site visit: $\qquad$

Depressional \& Flats $\qquad$ Wetland has multiple HGM classes? 〔 Yes $\square$ No

NOTE: Form is not complete with out the figures requested (figures can be combined).
Source of base aerial photo/map $\qquad$

OVERALL WETLAND CATEGORY _IV__ (based on functions $\square$ or special characteristics $\square$ )

1. Category of wetland based on FUNCTIONS

| Category I - Total score $=23-27$ |  |
| :--- | :--- |
| Category II - Total score $=20-22$ |  |
| Category III - Total score $=16-19$ |  |
| $\mathbf{X}$ | Category IV - Total score $=9-15$ |


| FUNCTION | Improving Water Quality | Hydrologic | Habitat |  |
| :---: | :---: | :---: | :---: | :---: |
| List appropriate rating (H, M, L) |  |  |  |  |
| Site Potential | M | M | L |  |
| Landscape Potential | M | L | L |  |
| Value | H | L | L | Total |
| Score Based on Ratings | 7 | 4 | 3 | 14 |

2. Category based on SPECIAL CHARACTERISTICS of wetland

| CHARACTERISTIC | Category |
| :--- | :---: |
| Estuarine |  |
| Wetland of High Conservation Value |  |
| Bog |  |
| Mature Forest |  |
| Old Growth Forest |  |
| Coastal Lagoon |  |
| Interdunal | X |
| None of the above |  |


| Score for each <br> function based <br> on three <br> ratings <br> (order of ratings <br> is not <br> important ) <br>  <br> $9=H, H, H$ <br> $8=H, H, M$ <br> $7=H, H, L$ <br> 7 <br> $=H, M, M$ <br> $6=H, M, L$ <br> $6=M, M, M$ <br> $5=H, L, L$ <br> $5=M, M, L$ <br> $4=M, L, L$ <br> $3=L, L, L$ |
| :--- |

$\qquad$

## Maps and Figures required to answer questions correctly for Western Washington

## Depressional Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :---: |
| Cowardin plant classes | D 1.3, H 1.1, H 1.4 | 1 |
| Hydroperiods | D 1.4, H 1.2 | 2 |
| Location of outlet (can be added to map of hydroperiods ) | D 1.1, D 4.1 | N/A |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | D 2.2, D 5.2 | 1 |
| Map of the contributing basin | D 4.3, D 5.3 | 3 |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | H 2.1, H 2.2, H 2.3 | 4 |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | D 3.1, D 3.2 | 4 |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | D 3.3 | 5 |

## Riverine Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :--- |
| Cowardin plant classes | H 1.1, H 1.4 |  |
| Hydroperiods | H 1.2 |  |
| Ponded depressions | R 1.1 |  |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | R 2.4 | R 1.2, R 4.2 |
| Plant cover of trees, shrubs, and herbaceous plants | R 4.1 |  |
| Width of unit vs. width of stream (can be added to another figure) | R 2.2, R 2.3, R 5.2 |  |
| Map of the contributing basin | H 2.1, H 2.2, H 2.3 |  |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | R 3.1 |  |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | R 3.2, R 3.3 |  |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | R |  |

Lake Fringe Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :--- |
| Cowardin plant classes | L $1.1, \mathrm{~L} 4.1, \mathrm{H} 1.1, \mathrm{H} 1.4$ |  |
| Plant cover of trees, shrubs, and herbaceous plants | L 1.2 |  |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | L 2.2 |  |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | $\mathrm{H} 2.1, \mathrm{H} 2.2, \mathrm{H} 2.3$ |  |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | L 3.1, L 3.2 |  |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | L 3.3 |  |

## Slope Wetlands

| Map of: | To answer questions: | Figure \# |
| :--- | :--- | :--- |
| Cowardin plant classes | H 1.1, H 1.4 |  |
| Hydroperiods | H 1.2 |  |
| Plant cover of dense trees, shrubs, and herbaceous plants | S 1.3 |  |
| Plant cover of dense, rigid trees, shrubs, and herbaceous plants <br> (can be added to another figure) | S 4.1 |  |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | S 2.1, S 5.1 |  |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including <br> polygons for accessible habitat and undisturbed habitat | H 2.1, H 2.2, H 2.3 |  |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | S 3.1, S 3.2 |  |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web) | S 3.3 |  |

## HGM Classification of Wetland in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.
If hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

DNO - go to 2YES - the wetland class is Tidal Fringe - go to 1.1
1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
$\square$ NO - Saltwater Tidal Fringe (Estuarine)
$\square$ YES - Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is an Estuarine wetland and is not scored. This method cannot be used to score functions for estuarine wetlands.
2. The entire wetland unit is flat and precipitation is the only source ( $>90 \%$ ) of water to it.

Groundwater and surface water runoff are NOT sources of water to the unit.NO - go to 3
$\square$ YES - The wetland class is Flats
If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.
3. Does the entire wetland unit meet all of the following criteria?
$\square$ The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;At least $30 \%$ of the open water area is deeper than $6.6 \mathrm{ft}(2 \mathrm{~m})$.
NO - go to 4YES - The wetland class is Lake Fringe (Lacustrine Fringe)
4. Does the entire wetland unit meet all of the following criteria?The wetland is on a slope (slope can be very gradual),The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.The water leaves the wetland without being impounded.NO - go to 5
$\square$ YES - The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually $<3 \mathrm{ft}$ diameter and less than 1 ft deep).
5. Does the entire wetland unit meet all of the following criteria?The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,The overbank flooding occurs at least once every 2 years.
$\square \mathrm{NO}$ - go to 6
$\square$ YES - The wetland class is Riverine
NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding.
$\qquad$
6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? This means that any outlet, if present, is higher than the interior of the wetland.NO - go to 7

YES - The wetland class is Depressional
7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.
$\square \mathrm{NO}$ - go to 8
$\square$ YES - The wetland class is Depressional
8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents $10 \%$ or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than $10 \%$ of the unit; classify the wetland using the class that represents more than $90 \%$ of the total area.

| HGM classes within the wetland unit <br> being rated | HGM class to <br> use in rating |
| :---: | :---: |
| Slope + Riverine | Riverine |
| Slope + Depressional | Depressional |
| Slope + Lake Fringe | Lake Fringe |
| Depressional + Riverine along stream <br> within boundary of depression | Depressional |
| Depressional + Lake Fringe | Depressional |
| Riverine + Lake Fringe | Riverine |
| Salt Water Tidal Fringe and any other <br> class of freshwater wetland | Treat as <br> ESTUARINE |

If you are still unable to determine which of the above criteria apply to your wetland, or if you have more than 2 HGM classes within a wetland boundary, classify the wetland as Depressional for the rating.

NOTES and FIELD OBSERVATIONS:

## DEPRESSIONAL AND FLATS WETLANDS

Water Quality Functions - Indicators that the site functions to improve water quality
D 1.0. Does the site have the potential to improve water quality?
D 1.1. Characteristics of surface water outflows from the wetland:
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no outlet).
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet.Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowingWetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch.

## D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic

 (use NRCS definitions).D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowardin classes):

| Forested Cowardin classes): | points $=5$ |  |
| :--- | ---: | ---: |
| Wetland has persistent, ungrazed, plants $>95 \%$ of area | points $=3$ | 1 |
| Wetland has persistent, ungrazed, plants $>1 / 2$ of area | points $=1$ |  |
| Wetland has persistent, ungrazed plants $>1 / 10$ of area | points $=0$ |  |
| Wetland has persistent, ungrazed plants $<1 / 10$ of area |  |  |
| D 1.4. Characteristics of seasonal ponding or inundation: |  |  |
| This is the area that is ponded for at least 2 months. See description in manual. |  |  |
| Area seasonally ponded is $>1 / 2$ total area of wetland | points $=2$ | 4 |
| Area seasonally ponded is $>1 / 4$ total area of wetland | points $=2$ |  |
| Area seasonally ponded is $<1 / 4$ total area of wetland | points $=0$ |  |
| Total for D 1 | Add the points in the boxes above | $\mathbf{8}$ |

Wetland has persistent, ungrazed, plants $>95 \%$ of area
Wetland has persistent, ungrazed, plants $>1 / 2$ of area
Wetland has persistent, ungrazed plants $>1 / 10$ of area
Wetland has persistent, ungrazed plants $<\frac{1}{10}$ of area
points $=1$ points $=0$
D 1.4. Characteristics of seasonal ponding or inundation:
This is the area that is ponded for at least 2 months. See description in manual.
Area seasonally ponded is $>1 / 2$ total area of wetland
Area seasonally ponded is $>1 / 4$ total area of wetland
Area seasonally ponded is $<1 / 4$ total area of wetland
Total for D 1
points $=5$
points $=3$

1 | points $=1$ |  |
| :---: | :---: |
| $4 \quad \mathrm{No}=0$ | 0 |

Rating of Site Potential If score is: $\square 12-16=\mathrm{H} \quad \square \mathbf{- 1 1 = M} \quad \square \mathbf{0 - 5}=\mathrm{L} \quad$ Record the rating on the first page

| D 2.0. Does the landscape have the potential to support the water quality function of the site? |  |  |
| :--- | ---: | :---: |
| D 2.1. Does the wetland unit receive stormwater discharges? | Yes $=1 \quad$ No $=0$ | 0 |
| D 2.2. Is $>10 \%$ of the area within 150 ft of the wetland in land uses that <br> generate pollutants? | Yes $=1 \quad$ No $=0$ | 0 |
| D 2.3. Are there septic systems within 250 ft of the wetland? | Yes $=1 \quad$ No $=0$ | 1 |
| D 2.4. Are there other sources of pollutants coming into the wetland that are <br> not listed in questions D 2.1-D 2.3? <br> Source | Yes $=1 \quad$ No $=0$ | 0 |
| Total for D 2 | Add the points in the boxes above | 1 |

Rating of Landscape Potential If score is: $\square \mathbf{3}$ or $\mathbf{4}=\mathrm{H} \square 1$ or $\mathbf{2}=\mathrm{M} \square \mathbf{0}=\mathrm{L}$ Record the rating on the first page

| D 3.0. Is the water quality improvement provided by the site valuable to society? |  |  |
| :---: | :---: | :---: |
| D 3.1. Does the wetland discharge directly (i.e., within 1 mi ) to a stream, river, lake, or marine water that is on the 303(d) list? | Yes=1 $\mathrm{No}=0$ | 0 |
| D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list? |  | 1 |
|  | Yes $=1 \quad \mathrm{No}=0$ |  |
| D 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality (answer YES if there is a TMDL for the basin in which the unit is found)? | Yes $=2 \quad \mathrm{No}=0$ | 2 |
| Total for D 3 Add the | , boxes | 3 |

## DEPRESSIONAL AND FLATS WETLANDS

Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradation D 4.0. Does the site have the potential to reduce flooding and erosion? D 4.1. Characteristics of surface water outflows from the wetland: Wetland is a depression or flat depression with no surface water leaving it (no outlet)
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet
Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing
points $=4$

D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part.

Marks of ponding are 3 ft or more above the surface or bottom of outlet
Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet
$\square$ Marks are at least 0.5 ft to $<2 \mathrm{ft}$ from surface or bottom of outlet
$\square$ The wetland is a "headwater" wetland
Wetland is flat but has small depressions on the surface that trap water
Marks of ponding less than 0.5 ft ( 6 in )

| points $=7$ |  |
| :--- | :--- |
| points $=5$ |  |
| points $=3$ |  |
| points $=3$ |  |
| points $=1$ |  |
| points $=0$ |  |$\quad$|  |
| :--- |

D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself.
$\square$ The area of the basin is less than 10 times the area of the unit points $=5$
The area of the basin is 10 to 100 times the area of the unit
The area of the basin is more than 100 times the area of the unit
$\square$ Entire wetland is in the Flats class
Total for D 4
Add the points in the boxes above
10
Rating of Site Potential If score is: $\quad \square \mathbf{1 2 - 1 6 = H \quad \square 6 - 1 1 = M \quad \square 0 - 5 = \mathrm { L } \quad \text { Record the rating on the first page }}$
D 5.0. Does the landscape have the potential to support hydrologic function of the site?
D 5.1. Does the wetland unit receive stormwater discharges? Yes =1 No=0 $\quad$ O
D 5.2. Is $>10 \%$ of the area within 150 ft of the wetland in land uses that generate excess runoff?
Yes $=1 \quad \mathrm{No}=0$
D 5.3. Is more than $25 \%$ of the contributing basin of the wetland covered with intensive human land uses (residential at $>1$ residence/ac, urban, commercial, agriculture, etc.)?

Yes $=1 \quad$ No $=0$
Total for D 5
Add the points in the boxes above $\mathbf{0}$
Rating of Landscape Potential If score is: $\square \mathbf{3 = H} \quad \square \mathbf{1}$ or $\mathbf{2}=\mathrm{M} \quad \square \mathbf{0}=\mathrm{L} \quad$ Record the rating on the first page

Rating of Value If score is: $\square \mathbf{2 - 4}=\mathrm{H} \quad \square \mathbf{1 = M} \quad \square 0=\mathrm{L}$
Record the rating on the first page

## These questions apply to wetlands of all HGM classes.

HABITAT FUNCTIONS - Indicators that site functions to provide important habitat
H 1.0. Does the site have the potential to provide habitat?
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of $1 / 4$ ac or more than $10 \%$ of the unit if it is smaller than 2.5 ac. Add the number of structures checked.

| $\square$ Aquatic bed 4 structures or more: points $=4$ <br> $\square$ Emergent 3 structures: points $=2$ <br> $\square$ Scrub-shrub (areas where shrubs have > 30\% cover) 2 structures: points -1 <br> $\square$ Forested (areas where trees have $>30 \%$ cover) 1 structure: points $=0$ <br> If the unit has a Forested class, check if:  <br> $\square$ The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous,  <br> moss/ground-cover) that each cover 20\% within the Forested polygon  | 0 |
| :---: | :---: |
| H 1.2. Hydroperiods <br> Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than $10 \%$ of the wetland or $1 / 4$ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated <br> 4 or more types present: points $=3$ Seasonally flooded or inundated <br> 3 types present: points $=2$ Occasionally flooded or inundated <br> 2 types present: points = 1 Saturated only <br> 1 types present: points $=0$ Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland <br> 2 points Freshwater tidal wetland <br> 2 points | 1 |
| H 1.3. Richness of plant species <br> Count the number of plant species in the wetland that cover at least $10 \mathrm{ft}^{2}$. <br> Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle <br> If you counted: > 19 species <br> points $=2$ <br> 5-19 species <br> points $=1$ <br> < 5 species <br> points $=0$ | 1 |
| H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. <br> None $=0$ points <br> All three diagrams in this row are HIGH $=3$ points <br> Low = 1 point <br> Moderate $=2$ points | 0 |

H 1.5. Special habitat features:
Check the habitat features that are present in the wetland. The number of checks is the number of points.Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long)Standing snags (dbh > 4 in) within the wetlandUndercut banks are present for at least $6.6 \mathrm{ft}(2 \mathrm{~m})$ and/or overhanging plants extends at least $3.3 \mathrm{ft}(1 \mathrm{~m})$ over a stream (or ditch) in, or contiguous with the wetland, for at least $33 \mathrm{ft}(10 \mathrm{~m})$Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)
At least $1 / 4$ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians)Invasive plants cover less than 25\% of the wetland area in every stratum of plants (see H 1.1 for list of strata)
Total for H 1
Add the points in the boxes above 3
Rating of Site Potential If Score is: $\square 15-18=\mathrm{H} \quad \square \mathbf{7 - 1 4 = M \quad \square \mathbf { 0 - 6 } = \mathrm { L } \quad \text { Record the rating on the first page }}$


Rating of Landscape Potential If Score is: $\square 4-6=\mathrm{H} \quad \square \mathbf{1 - 3 = M \quad \square < 1 = \mathrm { L } \quad \text { Record the rating on the first page }}$


Rating of Value If Score is: $\square \mathbf{2 = H \quad \square 1 = M}$
Record the rating on the first page
$\qquad$

## WDFW Priority Habitats

Priority habitats listed by WDFW (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.
http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here:
http://wdfw.wa.gov/conservation/phs/list/
Count how many of the following priority habitats are within $330 \mathrm{ft}(100 \mathrm{~m})$ of the wetland unit: NOTE: This question is independent of the land use between the wetland unit and the priority habitat.
$\square$ Aspen Stands: Pure or mixed stands of aspen greater than 1 ac ( 0.4 ha ).
$\square$ Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report).
$\square$ Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
$\square$ Old-growth/Mature forests: Old-growth west of Cascade crest - Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac ( 20 trees/ha) > 32 in $(81 \mathrm{~cm})$ dbh or $>200$ years of age. Mature forests - Stands with average diameters exceeding 21 in ( 53 cm ) dbh; crown cover may be less than $100 \%$; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.

Oregon White Oak: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (full descriptions in WDFW PHS report p. $158-$ see web link above).
$\square \quad$ Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
$\square$ Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (full descriptions in WDFW PHS report p. 161 - see web link above ).
$\square$ Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
$\square \quad$ Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (full descriptions of habitats and the definition of relatively undisturbed are in WDFW report - see web link on previous page ).
$\square$ Caves: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
$\square$ Cliffs: Greater than $25 \mathrm{ft}(7.6 \mathrm{~m})$ high and occurring below 5000 ft elevation.
$\square$ Talus: Homogenous areas of rock rubble ranging in average size 0.5-6.5 ft (0.15-2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.

Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of $>20$ in ( 51 cm ) in western Washington and are $>6.5 \mathrm{ft}(2 \mathrm{~m})$ in height. Priority logs are $>12$ in $(30 \mathrm{~cm})$ in diameter at the largest end, and $>20 \mathrm{ft}(6 \mathrm{~m})$ long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

## CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS


$\qquad$

## SC 4.0. Forested Wetlands

Does the wetland have at least 1 contiguous acre of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? If you answer YES you will still need to rate the wetland based on its functions.
$\square$ Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac ( 20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in $(81 \mathrm{~cm})$ or more.
$\square$ Mature forests (west of the Cascade Crest): Stands where the largest trees are 80-200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in ( 53 cm ).
$\square$ Yes $=$ Category I $\quad \square$ No $=$ Not a forested wetland for this section
SC 5.0. Wetlands in Coastal Lagoons
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?
$\square \quad$ The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks
$\square$ The lagoon in which the wetland is located contains ponded water that is saline or brackish ( $>0.5 \mathrm{ppt}$ ) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom )

## Yes - Go to SC 5.1 <br> No = Not a wetland in a coastal lagoon

SC 5.1. Does the wetland meet all of the following three conditions?
$\square$ The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than $20 \%$ cover of aggressive, opportunistic plant species (see list of species on p. 100).
$\square$ At least $3 / 4$ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or ungrazed or un-mowed grassland.
$\square$ The wetland is larger than $\frac{1}{10}$ ac $\left(4350 \mathrm{ft}^{2}\right)$
Yes $=$ Category I
No = Category II

## SC 6.0. Interdunal Wetlands

Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions.
In practical terms that means the following geographic areas:
$\square$ Long Beach Peninsula: Lands west of SR 103
$\square$ Grayland-Westport: Lands west of SR 105
$\square$ Ocean Shores-Copalis: Lands west of SR 115 and SR 109
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates $\mathrm{H}, \mathrm{H}, \mathrm{H}$ or $\mathrm{H}, \mathrm{H}, \mathrm{M}$ for the three aspects of function)?

$$
\square \text { Yes = Category I }
$$

No - Go to SC 6.2
SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?
$\square$ Yes = Category II
$\square$ No - Go to SC 6.3
SC 6.3. Is the unit between 0.1 and 1 ac , or is it in a mosaic of wetlands that is between 0.1 and 1 ac ?
$\square$ Yes = Category III $\quad \square$ No = Category IV
Category of wetland based on Special Characteristics
If you answered No for all types, enter "Not Applicable" on Summary Form





November 7, 2022



## WQA 303(d)




## Appendix E Site Photographs



Photo 1. Soil profile at TP-1


Photo 2. View to north from TP-1


Photo 3. View to east from TP-1


Photo 4. View to south from TP-1


Photo 5. View to west from TP-1


Photo 6. Soil profile at TP-2


Photo 7. View to west from TP-2


Photo 8. View to north from TP-2


Photo 9. View to west from TP-2


Photo 10. View to south from TP-2


Photo 11. Soil profile at TP-3


Photo 12. View to south from TP-3


Photo 13. View to north from TP-3


Photo 14. View to east from TP-3


Photo 15. Soil profile at TP-4


Photo 16. View to north from TP-4


Photo 17. View to south from TP-4


Photo 18. View to west from TP-4


Photo 19. View to east from TP-4


Photo 20. View of property facing east. Much of the property is currently in agricultural uses.


Photo 21. View of off-site wetland from northern property boundary


Confluence
ENVIRONMENTAL COMPANY

