“Depending on the rate and magnitude of change and the vulnerability and exposure of human and natural systems, climate change will alter ecosystems, food systems, infrastructure, coastal, urban and rural areas, human health and livelihoods. Adaptive responses to a changing climate require actions that range from incremental changes to more fundamental, transformational changes.”

— Intergovernmental Panel on Climate Change (IPCC), *Fifth Assessment Report*, 2014
Suggested Citation

Acknowledgments
The Thurston Regional Planning Council (TRPC) prepared the Thurston Climate Adaptation Plan — which recommends actions to help the Thurston County, Wash. region (Thurston Region) prepare for and adjust to adverse climate change impacts. The U.S. Environmental Protection Agency (EPA) provided a National Estuary Program grant for the project. The Washington Department of Commerce administered the funding, and TRPC hired Thurston County and Earth Economics as subcontractors. TRPC is grateful for the support of these organizations and the thousands of area residents who served on the project’s advisory committees, attended meetings, and otherwise contributed to the plan’s development. For more information, please visit www.trpc.org/climate.

Contributors
Project Team
Michael Burnham, Senior Planner (project manager and plan author), TRPC
Allison Osterberg, Senior Planner, Thurston County
Michael Ambrogi, Senior GIS Analyst, TRPC
Katrina Van Every, Associate Planner, TRPC
Paul Brewster, Senior Planner, TRPC
Veena Tabbutt, Research & Data Director, TRPC

Project Support
Burlina Montgomery, Communications & Outreach Specialist I (survey and logistical support), TRPC
Erin Cahill, Communications & Outreach Specialist II (social media and website administration), TRPC
Sarah Selstrom, Administrative Assistant (plan design and production), TRPC
Ben Silver, GIS Technician (former), TRPC

Stakeholder Advisory Committee
Amy Hatch-Winecka, Environmental Program Manager, Thurston Conservation District
Amy Tousley, Municipal Liaison Manager, Puget Sound Energy
Andrew Kinney, Emergency Management Coordinator, Thurston County
Barb Scavezze, Resident Representative
Bill Paulen, Resident Representative
Candace Penn, Climate Change Specialist, Squaxin Island Tribe
Chris Hawkins, Community Engagement, Evidence and Partnerships Manager, Thurston County
Cynthia Pratt, Deputy Mayor, City of Lacey
Dan Smith, Water Resources Manager, City of Tumwater
Graeme Sackrison, Board Member, Thurston Climate Action Team
Grant Beck, Planning Director, City of Yelm
Jason Robertson, President, Jason Robertson & Co.
Lisa Palazzi, Soil and Wetland Scientist, SCJ Alliance
Mark Maurer, Water Resources Engineer, Thurston County
Morgan Greene, Program Coordinator (former), Nisqually River Council
Rachael Jamison, Environmental Programs Director, Port of Olympia
Randy Schleis, Mayor (former), City of Rainier
Rich Hoep, Public Works Director, City of Olympia
Scott Davis, County Engineer (interim), Thurston County
Scott Morgan, Sustainability Director, The Evergreen State College
Stephen Bramwell, Director & Agriculture Faculty, WSU Thurston County Extension
Wendy Steffensen, Environmental Project Manager, LOTT Clean Water Alliance
Science Advisory Committee
Candace Penn, Climate Change Specialist, Squaxin Island Tribe
Carrie Parr (Pucko), Professor of Biology and Environmental Studies, The Evergreen State College
Chris Ellings, Salmon Recovery Program Manager, Nisqually Indian Tribe
Lara Whitely Binder, Senior Strategist (former), University of Washington Climate Impacts Group
Morgan Greene, Program Coordinator (former), Nisqually River Council

Thurston Regional Planning Council Members
Alan Vanell, Town of Bucoda
Virgil Clarkson, City of Lacey
Nathaniel Jones (Vice Chair), City of Olympia
Everett Gage, City of Rainier
David Watterson, City of Tenino
Tom Oliva (Chair), City of Tumwater
JW Foster (Secretary), City of Yelm
John Hutchings, Thurston County
Karen Messmer, Intercity Transit
Cynthia Pratt, LOTT Clean Water Alliance
Joe Downing, Port of Olympia
Russell Olsen, PUD No. 1 of Thurston County
Justin Montermini, Olympia School District
Chuck Namit, North Thurston Public Schools
Amy Loudermilk, Confederated Tribes of the Chehalis Reservation
Heidi Thomas, Nisqually Indian Tribe
Michael Cade, Thurston Economic Development Council
Gene Dobry, Lacey Fire District #3
Puget Sound Regional Council (vacant)
LG Nelson, Timberland Regional Library
Jeanne Rynne, The Evergreen State College

Table of Contents
1. Introduction
2. Executive Summary
 2.1 Plan Overview
 2.2 Plan Components
3. Vision, Goals & Guiding Principles
 3.1 Vision Statement
 3.2 Project Goals
 3.3 Guiding Principles
4. Plan Development
 4.1 Science Summary
 4.2 Vulnerability Assessment
 4.3 Risk Assessment
 4.4 Public Engagement
5. Actions
 5.1 Action Evaluation & Prioritization
 5.2 Action Tables
 5.3 Benefit-Cost Analyses
6. Next Steps
 6.1 Ongoing Implementation & Engagement
 6.2 Mitigation Planning
7. References
8. Appendices
 Appendix A: Science Summary
 Appendix B: Vulnerability Assessment
 Appendix C: Goal-Risk Report
 Appendix D: Public-Engagement Strategy
 Appendix E: Action-Risk Report
 Appendix F: Action Benefit-Cost Analyses
THURSTON CLIMATE ADAPTATION PLAN

A Climate Change Preparedness & Response Plan for Thurston County

DRAFT
“Depending on the rate and magnitude of change and the vulnerability and exposure of human and natural systems, climate change will alter ecosystems, food systems, infrastructure, coastal, urban and rural areas, human health and livelihoods. Adaptive responses to a changing climate require actions that range from incremental changes to more fundamental, transformational changes.”

— Intergovernmental Panel on Climate Change (IPCC),
Fifth Assessment Report, 2014
Suggested Citation

Acknowledgments
The Thurston Regional Planning Council (TRPC) prepared the Thurston Climate Adaptation Plan — which recommends actions to help the Thurston County, Wash. region (Thurston Region) prepare for and adjust to adverse climate change impacts. The U.S. Environmental Protection Agency (EPA) provided a National Estuary Program grant for the project. The Washington Department of Commerce administered the funding, and TRPC hired Thurston County and Earth Economics as subcontractors. TRPC is grateful for the support of these organizations and the thousands of area residents who served on the project’s advisory committees, attended meetings, and otherwise contributed to the plan’s development. For more information, please visit www.trpc.org/climate.

Contributors

Project Team
Michael Burnham, Senior Planner (project manager and plan author), TRPC
Allison Osterberg, Senior Planner, Thurston County
Michael Ambrogi, Senior GIS Analyst, TRPC
Katrina Van Every, Associate Planner, TRPC
Paul Brewster, Senior Planner, TRPC
Veena Tabbutt, Research & Data Director, TRPC

Project Support
Burlina Montgomery, Communications & Outreach Specialist I (survey and logistical support), TRPC
Erin Cahill, Communications & Outreach Specialist II (social media and website administration), TRPC
Sarah Selstrom, Administrative Assistant (plan design and production), TRPC
Ben Silver, GIS Technician (former), TRPC

Stakeholder Advisory Committee
Amy Hatch-Winecka, Environmental Program Manager, Thurston Conservation District
Amy Tousley, Municipal Liaison Manager, Puget Sound Energy
Andrew Kinney, Emergency Management Coordinator, Thurston County
Barb Scavezze, Resident Representative
Bill Paulen, Resident Representative
Candace Penn, Climate Change Specialist, Squaxin Island Tribe
Chris Hawkins, Community Engagement, Evidence and Partnerships Manager, Thurston County
Cynthia Pratt, Deputy Mayor, City of Lacey
Dan Smith, Water Resources Manager, City of Tumwater
Graeme Sackrison, Board Member, Thurston Climate Action Team
Grant Beck, Planning Director, City of Yelm
Jason Robertson, President, Jason Robertson & Co.
Lisa Palazzi, Soil and Wetland Scientist, SCJ Alliance
Mark Maurer, Water Resources Engineer, Thurston County
Morgan Greene, Program Coordinator (former), Nisqually River Council
Rachael Jamison, Environmental Programs Director, Port of Olympia
Randy Schleis, Mayor (former), City of Rainier
Rich Hoep, Public Works Director, City of Olympia
Scott Davis, County Engineer (interim), Thurston County
Scott Morgan, Sustainability Director, The Evergreen State College
Stephen Bramwell, Director & Agriculture Faculty, WSU Thurston County Extension
Wendy Steffensen, Environmental Project Manager, LOTT Clean Water Alliance
Science Advisory Committee
Candace Penn, Climate Change Specialist, Squaxin Island Tribe
Carrie Parr (Pucko), Professor of Biology and Environmental Studies, The Evergreen State College
Chris Ellings, Salmon Recovery Program Manager, Nisqually Indian Tribe
Lara Whitely Binder, Senior Strategist (former), University of Washington Climate Impacts Group
Morgan Greene, Program Coordinator (former), Nisqually River Council

Thurston Regional Planning Council Members
Alan Vannell, Town of Bucoda
Virgil Clarkson, City of Lacey
Nathaniel Jones (Vice Chair), City of Olympia
Everett Gage, City of Rainier
David Watterson, City of Tenino
Tom Oliva (Chair), City of Tumwater
JW Foster (Secretary), City of Yelm
John Hutchings, Thurston County
Karen Messmer, Intercity Transit
Cynthia Pratt, LOTT Clean Water Alliance
Joe Downing, Port of Olympia
Russell Olsen, PUD No. 1 of Thurston County
Justin Montermini, Olympia School District
Chuck Namit, North Thurston Public Schools
Amy Loudermilk, Confederated Tribes of the Chehalis Reservation
Heidi Thomas, Nisqually Indian Tribe
Michael Cade, Thurston Economic Development Council
Gene Dobry, Lacey Fire District #3
Puget Sound Regional Council (vacant)
LG Nelson, Timberland Regional Library
Jeanne Rynne, The Evergreen State College

Table of Contents
1. Introduction
2. Executive Summary
 2.1 Plan Overview
 2.2 Plan Components
3. Vision, Goals & Guiding Principles
 3.1 Vision Statement
 3.2 Project Goals
 3.3 Guiding Principles
4. Plan Development
 4.1 Science Summary
 4.2 Vulnerability Assessment
 4.3 Risk Assessment
 4.4 Public Engagement
5. Actions
 5.1 Action Evaluation & Prioritization
 5.2 Action Tables
 5.3 Benefit-Cost Analyses
6. Next Steps
 6.1 Ongoing Implementation & Engagement
 6.2 Mitigation Planning
7. References
8. Appendices
 Appendix A: Science Summary
 Appendix B: Vulnerability Assessment
 Appendix C: Goal-Risk Report
 Appendix D: Public-Engagement Strategy
 Appendix E: Action-Risk Report
 Appendix F: Action Benefit-Cost Analyses
1. Introduction

It’s Dec. 9, 2015, and the rains finally break.

Runners in soggy shoes plod over a foot bridge toward downtown Olympia, which rises just a few feet above sea level. Much of Marathon Park is submergered by several days of downpour that’s churned and crashed down the Deschutes River into Capitol Lake. A spindly red-cedar tree rises from the lake’s flooded shore.

There’s too much water this December day, but there was too little just a few months earlier.

Brown needles droop from the ailing tree’s branches — evidence of a wicked summer drought that withered plants and sparked wildfires around the state. A few feet away, a weathered sign warns that the snail-laden lake is closed until further notice. Half a world away in Paris, diplomats broker a global agreement to combat climate change.
It’s a scene rich with symbolism, a scene set in the context of extremes: 2015 marked Washington’s most severe wildfire year in modern history — with more than 1 million acres burned by summer’s end — but December’s deluge still made the year one of wettest on record (USDA, 2015).

Such seasonal extremes are perhaps a preview of our future.

Burning fossil fuels in automobiles and other human activities are increasing emissions of carbon dioxide and other gases that trap heat in the atmosphere like a greenhouse. Even as we strive to slow our emissions, adaptation is essential to address unavoidable warming due to past emissions. Our temperate region of snowy peaks, rocky shores, and evergreen forests is not immune to change.

Climate models project progressively warmer, wetter winters and hotter, drier summers for the Puget Sound region through the end of the 21st century. The warming is projected to shift the timing, type, and intensity of precipitation — all of which have a trickle-down effect on snowpack, runoff, streamflow, groundwater, and other crucial components of the hydrologic cycle: Picture winters in the 2050s with less snow across our highlands and more flooding along our rivers. And while our summers might feel more Californian, such warmer and drier days will raise the risk of algal blooms, wildfires, disease outbreaks, heat illnesses, and other hazards.

The takeaway: Climate change will continue to affect our human and natural systems in myriad ways tomorrow, so we must begin adapting today. It’s the socially, economically, and environmentally responsible thing to do.

The plan you’re reading includes a menu of actions to help the Thurston County, Wash. region (Thurston Region) prepare for and adjust to climate impacts — the very definition of adaptation. Many actions are new to the region, while other actions build on work we’re already doing. Please read on to learn what you can do personally and what your community can do collectively to become more resilient.

We have one planet but many climate solutions, so let’s get to work.

“Adaptation will be necessary to address impacts resulting from the warming which is already unavoidable due to past emissions.”

Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report, 2007
2. Executive Summary

2.1 Plan Overview

Climate change adaptation entails “efforts by society or ecosystems to prepare for or adjust to future climate change.”

U.S. Environmental Protection Agency

Storms. Floods. Droughts. Wildfires ... We face these natural hazards today, and climate change is projected to worsen them tomorrow. Fortunately, we can reduce our risks, respond to impacts, and remain resilient.

This is a guiding principle of the Thurston Climate Adaptation Plan — a concerted effort to help the Thurston County region prepare for and adjust to climate change. The Thurston Regional Planning Council (TRPC) crafted this important document with a $250,000 National Estuary Program (NEP) grant from the U.S. Environmental Protection Agency (EPA) and significant in-kind support from the community.
2.2 Plan Components

The Thurston Climate Adaptation Plan is the sum of many parts completed over a more than two-year period. Below is a project timeline and summary of these components, which are featured in this plan’s body and appendices.

Science Summary

In spring 2016, the project team — composed of TRPC and Thurston County staff members — completed a science summary of observed and projected climate change impacts at the global, national, and regional scales [See Section 4.1 and Appendix A]. The document also explored the emissions scenarios and computer models used in Intergovernmental Panel on Climate Change (IPCC) and University of Washington Climate Impacts Group (CIG) reports that provided the scientific foundation for this project’s vulnerability and risk assessments.

Plan Goals & Advisors

In summer 2016, the project team formed the Stakeholder Advisory Committee — a group composed of 22 public- and private-sector people with technical expertise and policy influence [See pg. XX]. The Stakeholder Advisory Committee, which met 13 times through fall 2017, began its work by choosing a vision statement, 12 goals, and nine guiding principles for the adaptation plan [See Section 3]. Members of TRPC’s ad hoc Science Advisory Committee also reviewed project materials, as needed, to ensure technical accuracy.
Vulnerability Assessment
In fall 2016, the project team completed work on a 100-page vulnerability assessment [See Section 4.2 and Appendix B], which used maps and other tools to explain how the region’s climate has changed historically, how it is projected to change during the 21st century, and how such changes affect the vulnerability of our human and natural systems. Building on the science summary, the vulnerability assessment describes how human health and welfare, as well as highways, municipal water systems, estuaries, and other built and natural “assets” within the project area are vulnerable to the collective impacts of natural hazards (e.g., wildfires, landslides, floods) and human-caused stressors (e.g., water pollution) exacerbated by climate change.

Risk Assessment
In winter 2017, the project team and Stakeholder Advisory Committee used a U.S. EPA methodology to evaluate how 85 risks identified in the vulnerability assessment affect the region’s ability to achieve the 12 project goals. The Stakeholder Advisory Committee selected a strategy for each risk — either Take Action or Accept — based on the risk’s relative likelihood and consequence of occurrence [See Section 4.3 and Appendix C].

Public Engagement
In early spring 2017, the project team began executing a public-engagement strategy to communicate the region’s climate risks and elicit adaptation action ideas from the community [See Section 4.4 and Appendix D]. The project team met with more than a dozen local organizations, hosted a community forum, and administered an online survey. TRPC promoted the project via an online video, newspaper editorial, social media, and other multimedia tools that reached more than 50,000 community members.

Action Evaluation & Prioritization
In late spring 2017, the project team drafted actions to reduce or respond to the region’s most severe climate risks. The Stakeholder Advisory Committee then modified the actions, as needed, and prioritized them using common criteria [effectiveness, durability, equity, etc.] [See Section 5.1]. This collaborative exercise yielded a list of 90 adaptation actions, including 25 priority actions, across six thematic categories: General; Drought & Water Quality; Flood & Erosion; Plants & Animals; Transportation & Energy; and, Wildfire & Extreme Heat. Priority actions in this plan include:

General:
G-01: Direct government staff members to develop their technical expertise and skills to prepare for and respond to climate change impacts.
G-02: Create hazard recovery plans and prioritize the restoration of vital public safety facilities and other essential community assets (e.g., hospitals and major bridges).
G-03: Pursue funding to implement highest-priority actions identified in the adopted Hazards Mitigation Plan for the Thurston Region.
G-04: Factor climate impacts into the planning of operations and the coordination of disaster response and recovery activities among first-responders, including public health, law enforcement, fire, and emergency medical services personnel.

Drought & Water Quality:
D-01: Develop and implement a comprehensive drought-response strategy that sets action levels for different drought stages.
D-02: Evaluate and secure sustained funding to support long-term monitoring of ground and surface water quality and quantity.
D-03: Increase reuse of reclaimed water for irrigating plants, supplementing low streamflow, and other purposes.

Flood & Erosion:
F-01: Evaluate and secure sustained funding to restore and protect riparian vegetation along freshwater and marine shorelines.
F-02: Incorporate projected sea-level rise and flooding information into the designation of regulatory hazard areas.
F-03: Design new and replacement stream culverts and other drainage infrastructure to accommodate projected higher peak flows associated with more frequent and intense heavy precipitation events.
F-04: Install flood gates and pumps on stormwater outfalls connected to Puget Sound to mitigate back-ups during high tides and heavy rains exacerbated by rising seas.
F-05: Build floodwalls or other protective structures around critical facilities located in areas vulnerable to flooding as a result of sea-level rise and heavy precipitation.
F-06: Require that new or renovated buildings utilize flood-protection measures (such as raised finished-floor levels and temporary flood barriers) to accommodate projected sea-level rise over the structures’ lifespan.
Plants & Animals:

P-01: Increase funding, education, and incentives for private landowners to manage lands in ways that enhance ecological and economic resilience (e.g., protecting and restoring forests, prairies, and shoreline/riparian areas).

P-02: Use best-management practices, such as installing large woody debris in rivers, to improve water temperature, streamflow, and channel conditions.

P-03: Create/Update basin plans that integrate climate impacts, and include goals and targets for protecting natural resources and habitat.

Transportation & Energy:

T-01: Expand and retrofit the region’s energy distribution, monitoring, and storage infrastructure to support more on-site renewable energy generation.

T-02: Provide additional utility incentives to support energy efficiency and renewable energy investments in buildings.

T-03: Offer additional utility rebates or bill credits to induce residents to buy and install energy-efficient appliances and other equipment.

T-04: Elevate, reinforce or relocate important electrical equipment that is within critical areas at risk of flooding and/or landslides.

T-05: Map transportation infrastructure that is vulnerable to repeated floods and/or landslides, and designate alternative travel routes for critical transportation corridors when roads must be closed because of natural hazards.

Wildfire & Extreme Heat

W-01: Create and maintain a map of the region’s high-risk wildland urban interface communities and locations of wildfires.

W-02: Require new developments in high-risk wildfire areas to submit a fire-protection plan during site plan review.

W-03: Provide private forestland owners and residents living in Wildland-Urban Interface (WUI) areas information about fire prevention/Firewise practices, and encourage application of such practices.

Tables with all 90 actions, as well as recommended leads and partners, conclude Section 5.2.

Benefit-Cost Analyses

The Tacoma-based consulting firm Earth Economics conducted benefit-cost analyses (BCAs) of plan actions that call for protecting and expanding vegetative buffers along shorelines and incentivizing infill development in urban areas (See Section 5.5 and Appendix F). The economic analyses, which incorporate the value of local ecosystem services (e.g., forests, grasslands, and riparian shorelines), include data that are applicable to a wide range of climate adaptation and mitigation actions and can aid decision-making efforts.

Next Steps

Effective plans don’t sit on shelves and collect dust, so this document’s first action and final section underscore that TRPC and its partners should consult the Thurston Climate Adaptation Plan frequently and update it periodically. This work should include evaluating the plan’s climate modeling and implementation progress, taking and amending actions where necessary, and enhancing the community’s understanding of climate change causes, impacts, and responses.

To this end, the final section (See Section 6) directs readers to TRPC’s online climate “Resilience Toolkit” and points to innovative ways TRPC and its partners are working to increase the community’s climate literacy. Such efforts include a climate change board game, pop-up library, and public art.

Climate change mitigation is just as important as adaptation, so the plan concludes by explaining how TRPC and its partners will continue working to reduce the Thurston Region’s carbon footprint. Such efforts include commissioning an “energy map” of the region’s energy sources and end uses, and commissioning “carbon wedge” analyses that show pathways to hit the region’s 2050 emissions-reduction target.
3. Vision, Goals & Guiding Principles

“In addition to doing its part to reduce greenhouse gas emissions, the Thurston County region will remain resilient in the face of climate change impacts during the 21st century and beyond.”

VISION STATEMENT
Thurston Climate Adaptation Plan

The Stakeholder Advisory Committee’s first official action was to help the project team draft a vision statement, goals, and guiding principles for the adaptation plan. Such policy language recognizes that adaptation and mitigation are equally important and builds upon work the Thurston Region is already doing to reduce and respond to climate change impacts.
3.1 Vision Statement

This plan’s vision statement recognizes that our region must do its part to shrink its carbon footprint [Also see Section 6.2] while adapting to climate impacts in the years ahead.

The award-winning Sustainable Thurston plan, which TRPC policymakers adopted in late 2013 and subsequently integrated into local policies, set the following targets for reducing the Thurston Region’s greenhouse gas emissions:

- Achieve 25 percent reduction of 1990 levels by 2020;
- Achieve 45 percent reduction of 1990 levels by 2035; and,
- Achieve 80 percent reduction of 1990 levels by 2050

The 2050 emissions target — which also has been adopted by California, King County, and many other state and local governments — provides a medium chance of preventing the global average temperature from rising more than 2°C (3.6°F) above pre-industrial levels (Luers et al., 2007). The United Nations Framework Convention on Climate Change’s “Paris Agreement,” which was brokered by more than 150 nations in late 2015, includes the 2°C target but also stresses the importance of pursuing a more aggressive 1.5°C (2.7°F) target to mitigate the most dangerous climate change risks (Figure, 2015).

3.2 Project Goals

The Stakeholder Advisory Committee selected Sustainable Thurston’s 12 priority goals, which are regional in scope and comprehensive in nature, as the adaptation plan’s goals. The subsequent risk assessment [See Section 4.3] considered how climate change risks compromise the Thurston Region’s ability to achieve these goals.

REGIONAL GOALS

1. Create vibrant centers, corridors and neighborhoods while accommodating growth;
2. Preserve environmentally sensitive lands, farmlands, forest lands, prairies, and rural lands, and develop compact urban areas;
3. Create a robust economy;
4. Protect and improve water quality, including groundwater, rivers, streams, lakes and Puget Sound;
5. Plan and act toward zero waste in the region;
6. Ensure that residents have the resources to meet their daily needs;
7. Support a local food system to increase community resilience, health and economic prosperity;
8. Ensure that the region’s water supply sustains people in perpetuity while protecting the environment;
9. Move toward a carbon-neutral community;
10. Maintain air quality standards;
11. Provide opportunities for everyone in the Thurston Region to learn about and practice sustainability;
12. Make strategic investments to advance sustainability regionally.

3.3 Guiding Principles

Lastly, the Stakeholder Advisory Committee crafted nine guiding principles to shape the adaptation plan’s development and outcomes. These principles are reflected throughout the plan’s components [See Section 4] and actions [See Section 5].

1. Think in terms of multiple generations and connected built and natural systems, as well as view local and regional decisions through the lens of social, economic, and environmental sustainability;
2. Increase resiliency through achievable, flexible — and, where possible, measurable and replicable — adaptation strategies and actions that will help the region prepare for and cope with climate change impacts;
3. Be responsive to immediate and long-term climate impacts — both emergencies and opportunities;
4. Identify and leverage climate change adaptation strategies and actions with mitigation co-benefits, such as reducing, capturing, and storing greenhouse gas emissions;
5. Utilize sound scientific research, scenarios modeling, economic analysis, and other tools to analyze regional and local climate change vulnerabilities, risks, and solutions;
6. Incorporate and complement work produced by others, including the Natural Hazards Mitigation Plan for the Thurston Region, Sustainable Thurston, Thurston Thrives, and Olympia sea-level rise analyses;
7. Consider the impacts of climate change adaptation recommendations on the region’s economy, environment, and society; this includes all urban and rural communities — especially vulnerable residents — and the ecosystem benefits provided by natural systems;
8. Recognize and strive to protect local indigenous tribes’ community health and well-being, including natural resources security and self-determination;
9. Seek broad community input, as well as educate residents about climate change and inspire them to take action.
“Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased.”

— IPCC, 2014

The following section includes excerpts from the science summary, vulnerability assessment, and other plan components. A full, annotated copy of each document is appended.
4.1 Science Summary

Our individual actions affect our collective carbon footprint — whether we drive a car, charge a cellphone, or catch a plane. Emissions from burning all those gallons of fuel and generating all those kilowatts of electricity are adding up and changing the climate in significant ways.

Consider the science: The IPCC concluded in a recent global climate change synthesis report, it is “extremely likely” that human influence was the “dominant cause” of observed planetary warming between 1951 and 2010 (IPCC, 2013). Such warming of the air, land and water has caused a reduction in snow and ice, rise in sea level, and other changes [See Figure XX] (USGCRP, 2014).

Shortly after calendars flipped to 2017, scientists reported that 2016 was the warmest year since modern record-keeping began in 1880: The global average temperature was 58.69°F — more than 1.8°F (1°C) warmer than it was in pre-industrial times (NOAA, 2017). Just as noteworthy, 2016 marked the fifth new record annual temperature this century and the 40th consecutive year that the annual temperature was above the 20th century average (57°F).

There’s no crystal ball that shows what the future holds, so scientists run plausible scenarios of future greenhouse gas emissions — also known as Representative Concentration Pathways (RCPs) — through models that simulate global climate. Local researchers can then downscale these scenarios to project changes in temperature, precipitation, and other climate indicators for the Pacific Northwest, Puget Sound region, and individual watersheds.

The IPCC’s 2013 report included an “extremely low” scenario (RCP 2.6), involving aggressive emissions reductions, all the way up to a “high” scenario (RCP 8.5), involving continued substantial greenhouse gas emissions through 2100 [See Figure XX]. The UW Climate Impacts Group’s 2015 State of Knowledge report (Mauger et al., 2015) — the primary source of watershed-scale modeling for TRPC’s vulnerability assessment — included the low and high scenarios in its projections for the Puget Sound region.

Science isn’t static, of course. The climate scenarios reflect the scientific community’s current understanding of complex and dynamic natural systems, coupled with informed assumptions about future human behaviors, economies, and technologies. Understanding of these various components will continue to evolve over time, as will the climate projections developed on the basis of these components. Additionally, natural variability (e.g., El Niño) has and will continue to play a role in shaping the Pacific Northwest’s climate. Some weather events and seasons may deviate temporarily from long-term climate trends.

All of this to say, the Thurston Region should monitor how modeled projections track with real climate impacts in the years ahead. To this end, the Thurston Climate Adaptation Plan’s first action (A-01) recommends that TRPC update the document periodically with new information, evaluate implementation efforts, and amend strategies and actions as necessary.

Figure XX: Pictured above are key indicators of the earth’s changing climate. Arrows show increasing or decreasing trends based on global observations.
Source: TRPC, adapted from image in U.S. Global Change Research Program’s (USGCRP) 2014 National Climate Assessment
4.2 Vulnerability Assessment

Building on the science summary [See Appendix A], the vulnerability assessment [See Appendix B] uses empirical data and modeling to produce text, tables, and maps that explain how the South Puget Sound region’s climate has changed historically, how it is projected to change during the 21st century, and how such changes affect the vulnerability of our human and natural systems. The 100-page document (TRPC, 2016) is organized into five sections — Troposphere, Freshwater Ecosystems, Marine Ecosystems, Terrestrial Ecosystems, and Human Health & Welfare — and summarized on the following pages.

<table>
<thead>
<tr>
<th>Greenhouse gas scenarios</th>
<th>Scenario characteristics</th>
<th>Amount of carbon dioxide in the atmosphere, 2100</th>
<th>Qualitative description, as used by UW CIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP 2.6</td>
<td>A very low emissions scenario that assumes ambitious greenhouse gas emissions reductions</td>
<td>400 parts per million (ppm)</td>
<td>“Very Low”</td>
</tr>
<tr>
<td></td>
<td>(50% reduction in global emissions by 2050 relative to 1990 levels, and near or below zero net emissions in the final decades of the 21st century)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCP 4.5</td>
<td>A low scenario in which greenhouse gas emissions stabilize by mid-century and fall sharply thereafter</td>
<td>538 ppm</td>
<td>“Low”</td>
</tr>
<tr>
<td>RCP 6.0</td>
<td>A medium scenario in which greenhouse gas emissions increase gradually until stabilizing in the final decades of the 21st century</td>
<td>670 ppm</td>
<td>“Medium”</td>
</tr>
<tr>
<td>RCP 8.5</td>
<td>A high scenario that assumes continued increases in greenhouse gas emissions until the end of the 21st century</td>
<td>936 ppm</td>
<td>“High”</td>
</tr>
</tbody>
</table>

Figure XX: This table shows the greenhouse gas emissions scenarios (RCPs) used in the IPCC’s 2014 synthesis report. Source: UW Climate Impacts Group (Mauger et al., 2015)

The warming trends are projected to continue through the 21st century, intensifying heat waves and weakening cold snaps. Such changes in temperature extremes [See Figure XX], coupled with shifts in seasonal precipitation, are expected to affect the region’s human and natural systems in many ways.

Figure XX: Olympians enjoy a taste of summer near the Heritage Park fountain in 2015. Climate models project hotter, drier summers for the region over the 21st century. Source: TRPC
Air Quality: Historically, the Thurston Region has not struggled with air pollution to the degree that larger communities have. The region’s warming climate and growing population could change this, however. Warmer air temperatures, coupled with more drivers and tailpipe emissions, would degrade air quality and pose health risks for young children and other vulnerable populations.

Air pollutants of concern include surface ozone (a main ingredient of urban smog) and PM$_{2.5}$ (particulate matter smaller than 2.5 micrometers in diameter). The primary sources of PM$_{2.5}$ in Thurston County today are burning wood in stoves and outdoors — and, to a lesser degree, combusting fossil fuels in automobile engines. The primary sources contributing to surface ozone are nitrogen dioxide emissions from automobiles and volatile organic compounds from industrial facilities.

Source: Adapted from Figure 4b in Appendix B of Mauger et al., 2015.
Precipitation: There is no discernable historical trend in precipitation across the Puget Sound region, which averaged about 78 inches annually during the latter half of the 20th century. The region’s annual precipitation volume is not projected to change significantly this century. Seasonal precipitation volumes are projected to change considerably, however: Models indicate generally hotter and drier summers and warmer and wetter winters. Highland forest areas of the Deschutes and Nisqually watersheds would see the biggest shifts in precipitation timing, type, and volume [See Figure XX, opposite].

The frequency of the region’s heaviest 24-hour rain events (top 1 percent) is projected to increase — occurring about seven days a year by late century, compared to two days a year historically. The intensity of such events is projected to increase as well, making communities more vulnerable to downed trees and power poles, floods, landslides, and water-borne pollution.

Figure XX: Downed power poles halt traffic on Yelm Highway, in Lacey, following a May 4, 2017, “microburst” storm event that featured heavy rains and a sudden downdraft of air. The storm, which caused the most private-property damage in the city’s history, toppled trees that damaged more than 40 structures. *Source*: TRPC.

Figure XX: Projected changes in total summer precipitation for South Puget Sound watersheds per emissions scenarios. *Source*: Adapted from Figure 7b in Appendix B of Mauger et al., 2015.
Snowpack:
Warmer winters are projected to result in more winter precipitation falling as rain instead of snow in Thurston County’s highlands and contiguous areas of Lewis and Pierce counties. This shift from snowfall to rainfall is projected to reduce the extent of Mount Rainier’s glaciers and surrounding snowpack [See Figure XX], as well as alter the timing and volume of runoff that affects streamflow and groundwater levels.
Freshwater Ecosystems

Streamflow: A shift to more rain-dominant conditions across Thurston County watersheds is projected to result in higher runoff and streamflow during cooler months but the opposite during warmer months.

Within the Nisqually and Deschutes watersheds, the higher-elevation headwater areas are projected to experience the biggest changes in snowpack and runoff [See Figure XX, previous page], which affect streamflow timing and volume. Fish and other species that have evolved around predictable peak flows would be vulnerable to die-offs and degraded habitat.

Figure XX: The Deschutes River overtops its banks at Tumwater Falls after a record-breaking storm in December 2015. Source: TRPC
Hydropower: Projected changes in seasonal precipitation and streamflow are expected to affect the productivity of hydropower dams on the Nisqually River and other Pacific Northwest rivers. Winter hydropower production is projected to increase with more winter rainfall/less snowfall, while summer hydropower production is projected to decrease with less summer rainfall and snowmelt. Meanwhile, increases in summer electricity demand in response to warmer air temperatures — for example, a growing population using more air conditioners and fans during extreme heat events — will raise the risk of higher energy bills and blackouts.

Surface Water Quality: Climate change could complicate local government efforts to comply with state water-quality standards — particularly efforts to lower temperature, pollution, and sediment in streams. More frequent and intense storms raise the risk of runoff from impervious surfaces and erosion of riparian vegetation that provides cooling shade and stabilizes shorelines.
Stream Temperature: Water temperatures are projected to rise in Thurston County’s highland and lowland streams over the 21st century [See Figures XX and XX, opposite]. Juvenile salmonids that develop in streams (e.g., Chinook, Coho and chum) and ocean-going adults that return to spawn are vulnerable to such changes because they have evolved within certain temperature parameters. Impacts could include fish populations moving to higher elevations with cooler temperatures and changes to migration timing and success.

Figure XX. A chum salmon swims up Maltby Creek, south of Eld Inlet, to spawn in late 2013. Source: TRPC.

Figure XX (above) shows historical stream temperature averages from 1993 - 2011, while Figure XX (below) shows projected temperatures for the 2080s.
Lakes: Shifts in the region’s hydrologic cycle, compounded by nutrient loading from urban and rural lands, could make lake conditions more suitable for algal blooms that degrade water quality and pose health risks for humans, fish, and animals. Warmer, drier summers are projected to reduce lake levels and raise water temperatures, which strongly influence the growth of cyanobacteria and harmful algal blooms.

Wetlands: Warmer, drier summers are projected to reduce the flow of water that replenishes and cools non-tidal marshes — which are mostly freshwater wetlands near lakes or on poorly drained soils. These wetland areas provide important habitat for frogs, birds, and other wildlife.
Groundwater: Bigger winter storms could result in high groundwater flooding, less infiltration into the saturated soil, and more runoff into streams and Puget Sound. Summer droughts, in turn, could spur more groundwater pumping when surface water is scarce. Such direct and indirect climate impacts, coupled with sea-level rise, could make Thurston County’s coastal freshwater aquifers more vulnerable to water quality and quantity risks.

The direct impacts of saltwater intrusion and inundation on groundwater are likely to be greatest in places with low topographic relief and very low hydraulic gradients between freshwater and saltwater (e.g., downtown Olympia and Nisqually Valley).

Wells: Prolonged droughts raise the risk of concentrating contaminants in private water systems’ shallow wells (less than 50-100 feet deep) — especially those at risk for saltwater intrusion or those with low productivity. Conversely, greater deluges raise the risk of overwhelming wastewater, septic, and stormwater conveyance systems and causing water-borne disease outbreaks in small community or private groundwater wells or other drinking water systems where water is untreated or minimally treated.

Water quantity (supply-and-demand) vulnerability is expected to be highest in snow-influenced watersheds with existing conflicts over water resources (e.g., fully allocated watersheds with little management flexibility). Vulnerability would be lowest where hydrologic change is smallest (i.e., existing rain-dominant watersheds), where there are simple institutional arrangements, and where current water demand rarely exceeds supply.

Figure XX. In 1995, the City of Olympia applied to the state Department of Ecology to transfer its municipal water rights from McAllister Springs (pictured this page) to a new McAllister Wellfield (pictured next page), upslope of the springs. Engineers had deemed McAllister Springs — Olympia’s primary water source at the time — susceptible to saltwater intrusion from nearby Puget Sound, as well as vulnerable to hazardous transportation spills and microbial contamination. Source: City of Olympia

Figure XX. McAllister Wellfield replaced McAllister Springs as the City of Olympia’s primary source of drinking water. Source: City of Olympia
Marine Ecosystems

Sea-level Rise: The Puget Sound region is projected to experience continued, and possibly accelerated, sea-level rise in coming decades as a result of melting ice sheets and warmer oceans. This may result in permanent inundation of some low-lying areas, and increased frequency, depth, and duration of coastal flooding due to greater reach of tides and storm surges.

Downtown Olympia, part of which is built atop fill and subsiding, floods today when there is heavy precipitation and a high tide that inundates the gravity-fed stormwater drainage system. Rising sea levels are projected to exacerbate this problem and increase the vulnerability of key roads and bridges, LOTT’s Budd Inlet Treatment Plant, and other important assets. Vulnerable infrastructure along other parts of Thurston County’s Puget Sound shoreline include low-lying homes, seawalls, and sections of Interstate 5 and U.S. Highway 101.

Estuaries: Rising seas are projected to permanently inundate the Nisqually Estuary’s tidal marshes and turn them into mudflats by the end of the 21st century. Amphibians, birds, and other wildlife would be particularly vulnerable to such changes in habitat.

Figure XX. A March 2016 king tide event inundated downtown Olympia’s Percival Landing and Sylvester Street. Sea-level rise is expected to raise the risk of coastal flooding associated with such high-tide events. Source: TRPC.

Figure XX: Climate models project that sea-level rise will permanently inundate the Nisqually Estuary’s upland areas (pictured) by the century’s end. This would reduce dramatically the habitat available for birds and land animals. Source: TRPC.
Ocean Acidification & Pollution:
Greater seawater absorption of atmospheric carbon dioxide is projected to increase the frequency, magnitude, and duration of harmful pH conditions throughout Puget Sound. A lower water pH (acidic condition) makes it harder for calcifying marine organisms to maintain shells.

Water-filtering clams and oysters — which hold significant cultural, economic, and environmental value in the region — are particularly vulnerable to ocean acidification. Continued pollution from land-based sources, coupled with changes in ocean temperature and pH, exacerbate health risks for people who eat raw or undercooked shellfish.

Terrestrial Ecosystems
Farms & Ranches: Puget Sound’s agricultural sector is expected to be relatively resilient to climate change — and some crops may even benefit from a longer growing season and more atmospheric carbon dioxide. However, periodic drought and flood events, as well as invasive pests and plants, still pose risks for local farms and ranches.

Sustained periods of low or no precipitation could make surface water supplies scarce, forcing farmers and ranchers to rely more heavily on groundwater for irrigating agricultural crops and watering livestock. Conversely, sustained periods of heavy rain, coupled with sea-level rise, could reduce the ability of drainage ditches and other infrastructure to handle flood events in near-coastal agricultural lands.
Crops & Livestock: Climate change is expected to influence which crops Puget Sound region farmers cultivate in the decades ahead. More carbon dioxide in the atmosphere may increase the biomass productivity of some crops, such as beans and grasses, but reduce the nutritional quality of forage and pasture lands for livestock and wild animals.

The largest livestock (e.g., dairy cows and horses) would be more vulnerable to heat stress during hotter, drier summers or flooding during warmer, wetter winters. Such stressors also could benefit thistle and other invasive plant species and allow them to outcompete native grasses and crops. Among other agricultural crops that have been studied specifically, berries, tree fruit, and tubers could experience a production decline, while some wine grapes could benefit from projected changes.

Forest & Prairies: Climate change is projected to affect the region’s forest and prairie vegetation growth, productivity, and range, as well as the prevalence and location of diseases, insects, and invasive species.

Shifts in seasonal temperature and precipitation threaten to alter the timing of flowering and the abundance of insect pollinators amid prairies, which could reduce some plant species. Such shifts also threaten to alter the range of Garry oak, Douglas-fir and other important tree species, as well as threaten their survival due to pest and disease outbreaks.

Figure XX: South Thurston County, as seen from Tumwater during summer 2013, appears as a sea of rolling blue ridges and towering green trees. Douglas-fir, which have thrived in the region’s temperate climate, provide abundant natural capital. Source: TRPC
Human Health & Welfare

Wildfires: Hotter, drier summers threaten to increase the frequency and intensity of wildfires in Thurston County and the broader Puget Sound region. Wildfires can pose acute or long-term health and welfare risks for firefighters and residents: incurring stress as a result of property losses; suffering burns and death; and, breathing in smoke and other pollutants.

Such fires also may disrupt energy transmission by downing power poles and damaging other infrastructure. Presumably, damage costs associated with these fires would go up if they occur in or spread to the wildland-urban interface.

Floods & Landslides: Warmer, wetter winters threaten to increase the frequency and intensity of floods and landslides, which can degrade water quality and threaten property and public safety. Buildings, roads and other assets located near rivers and coastlines are most vulnerable to floods. Assets most vulnerable to landslides are located on or near steep slopes.
Disease Vectors: The shifts in temperature and precipitation noted previously are projected to exacerbate or introduce a wide range of threats, including infectious diseases from exposure to viruses and bacteria, which would affect human health outcomes. Exposure pathways include food, water, air, soil, trees, insects, and animals.

Figure XX: A warming climate is expected to make Washington more hospitable for mosquitoes that carry West Nile Virus, which can cause a fatal neurological disease in humans. Source: Thurston County Public Health & Social Services

Tribal Traditions & Health: Members of local tribes, which are rooted in place and utilize land and waters for cultural traditions, are particularly vulnerable to climate change impacts on Puget Sound’s waters and marine species. As noted previously, traditional tribal seafood staples such as salmon and shellfish are threatened by warmer waters, ocean acidification, and polluted runoff. Continuing to consume these marine species may increase health risks from contamination, but replacing these food sources may result in the loss of cultural practices tied to harvest and consumption.

Figure XX: Squaxin Island Tribe members prepare/cook salmon on the shores of Arcadia Point in 2015 as part of the Tribe’s First Salmon Ceremony, which marks the arrival of the first salmon from the Pacific Ocean. Every member of the Tribe receives a piece of salmon, and the fish carcasses are returned to the Salish Sea (Puget Sound) in hopes that salmon will return the following year. Source: Squaxin Island Tribe
Population Displacement: Climate change-exacerbated natural hazards can lead to temporary or permanent population displacement. It’s impossible to predict how many people might move to or within Thurston County, or when, as a direct result of climate change. The region can start preparing for the possibility of climate migrants, however, by analyzing census data, migration trends, and other information to assess who might move here (e.g., because of family/ethnic connections or suitable job skills) and how to accommodate population growth in a manner consistent with jurisdictions’ comprehensive plans.

The vulnerability of our region’s residents will depend largely on their sensitivity and exposure to climate change-exacerbated threats and capacity to adapt. Local and state public health professionals are beginning to consider a wide range of social and behavioral factors (e.g., social isolation, physical ability, etc.) as they assess individuals’ exposure to threats and resilience.

4.3 Risk Assessment

TRPC’s project team and Stakeholder Advisory Committee used U.S. EPA’s Being Prepared for Climate Change workbook (EPA, 2014) to evaluate how risks identified by the vulnerability assessment [See Section 4.2] would affect the region’s ability to achieve the 12 project goals [See Section 3]. The assessment, which resulted in a strategy for each risk, took about four months to complete.

Risk Identification

In October 2016, the project team and Stakeholder Advisory Committee identified how 85 risks intersect with the 12 project goals and eight climate stressors: Warmer Summer; Warmer Winter; Warmer Water; Increasing Drought; Intensifying Precipitation; Sea-Level Rise; Ocean Acidification; and, Population Change [See Figure XX].

Figure XX: The adaptation plan’s Stakeholder Advisory Committee analyzes climate change risks during fall 2016. Source: TRPC
In November 2016, the project team and its Stakeholder Advisory Committee used the vulnerability assessment’s scientific research and modeling to analyze each risk’s likelihood, consequence, spatial extent, and time horizon. The project team put the information in a computer database to produce a Goal-Risk Report [See Figure XX and Appendix C].

<table>
<thead>
<tr>
<th>STRESSOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmer Summer</td>
<td>Encompasses the risks of the region’s warm months (April-September) being warmer than they have been historically</td>
</tr>
<tr>
<td>Warmer Winter</td>
<td>Encompasses the risks of the region’s cool months (October-March) being warmer than they have been historically</td>
</tr>
<tr>
<td>Warmer Water</td>
<td>Encompasses the risks of warming affecting the chemical, biological and/or physical characteristics of the region’s freshwater and marine waterbodies during any season</td>
</tr>
<tr>
<td>Increasing Drought</td>
<td>Encompasses the risks of drought — a deficiency in precipitation over an extended period — increasing in frequency and intensity</td>
</tr>
<tr>
<td>Intensifying Precipitation</td>
<td>Encompasses the risks of rain events increasing in frequency and intensity</td>
</tr>
<tr>
<td>Sea-Level Rise</td>
<td>Encompasses the risks of Puget Sound’s water levels rising</td>
</tr>
<tr>
<td>Ocean Acidification</td>
<td>Encompasses the risks of Puget Sound absorbing more atmospheric carbon dioxide</td>
</tr>
<tr>
<td>Population Change</td>
<td>Encompasses the risks that climate change will cause temporary or permanent population displacement</td>
</tr>
</tbody>
</table>

Risk Analysis

In November 2016, the project team and its Stakeholder Advisory Committee used the vulnerability assessment’s scientific research and modeling to analyze each risk’s likelihood, consequence, spatial extent, and time horizon. The project team put the information in a computer database to produce a Goal-Risk Report [See Figure XX and Appendix C].

Risk Evaluation

In January 2017, the project team placed each of the 85 risks in a matrix [See Figure XX] to show their relative consequence and likelihood.

Likelihood expressed the probability of impacts, given the climate modeling and research. Consequence expressed the severity of impacts, given local assets’ risk exposure.

Thirty-nine risks of greatest impact fell in the matrix’s upper-right third (red); 23 risks of lesser impact fell in the middle third (yellow); and, 23 risks of least impact fell in the lower-left third (green).

In February 2017, the Stakeholder Advisory Committee used the matrix to select a broad strategy — either Take Action or Accept — for each climate change risk.

- **Take action** — means choosing to reduce the risk’s impacts by recommending actions (new or continuing) and determining leads, partners, and timeframe. The Stakeholder Advisory Committee selected this strategy for all “red” risks and many “yellow” risks of high consequence or likelihood.

- **Accept** — means choosing to continue business as usual, monitor, and reassess the risk if impacts occur. The Stakeholder Advisory Committee selected this strategy for “green” and “yellow” risks of lesser consequence and/or likelihood.
4.4 Public Engagement

In early spring 2017, the project team began executing a public-engagement strategy [See Appendix D] to communicate the region’s climate risks widely and elicit adaptation action ideas.

The project team met with about 20 diverse organizations — ranging from the Black Hills Audubon Society and the South Thurston Economic Development Initiative, to the Nasqually River Council and the Thurston County Fire Chiefs Association. The project team also hosted a community forum and administered an online survey. TRPC promoted these events via an online video, newspaper editorial, social media, word-of-mouth, and other methods that reached more than 50,000 people.

The community forum and online survey enabled participants to learn about the region’s climate risks and recommend adaptation and mitigation actions.

DROUGHT & WATER USE

WHAT IS AT RISK:
- Lakes and Streams: Changes in water volume and temperature affect critical habitats for fish and wildlife.
- Aquifers: Warmer, drier summers weaken less permeable aquifers into the aquifer. This affects the flow of surface streams as well as the supply of groundwater for drinking.
- Snowpack: Warmer winters spell in less snowpack and change the timing of snowmelt in streams.

WHAT WE CAN DO:
- Water Storage: Construct large water-storage facilities (e.g., water towers or aqueducts). Water Conservation: Conserve water during dry months (e.g., the migration for salmon).
- Rainwater Harvesting: Install rainwater harvesting facilities (e.g., cisterns) when new commercial buildings are constructed. Collect rainwater to develop local irrigation and gardening opportunities.
- Water Banking: Allow people to conserve water during a drought without losing their water rights.

TELL US YOUR IDEAS:
What additional actions can individuals and their communities take to reduce these risks and enhance resiliency? Please fill out a card at tonight’s meeting or complete an online survey (www.trpc.org/climate).

PLANTS & ANIMALS

WHAT IS AT RISK:
- Shellfish: As the ocean becomes more acidic, shellfish have a difficult time developing shells.
- Agriculture: Crop yields and quality can decrease in fall because summer heat stress on crops and plants, and more pests and diseases.
- Habitat: Warmer summers stress sensitive plants and habitats. This can leave more vulnerable to disease and damage caused by pests and pathogens.

WHAT WE CAN DO:
- Marine Habitats: Enhance underwater vegetation (e.g., eelgrass) and reduce polluted runoff to help maintain local fisheries.
- Predatory Habitats: Enhance ecosystem vegetation, streams, wetlands, grasslands, and other resources for waterfowl and other ecosystems.
- Agriculture: Use cover crops for rainwater harvesting, vegetation, and ecosystem services. Insecticides, education, and other resources for pollinators and other species.
- Natural Resources: Create new and existing programs to help sustain local fisheries.
- Landscapes: Warmer, drier summers stress sensitive habitats. This means expanding existing or developing new programs.

TELL US YOUR IDEAS:
What additional actions can individuals and their communities take to reduce these risks and enhance resiliency? Please fill out a card at tonight’s meeting or complete an online survey (www.trpc.org/climate).

TRANSPORTATION & ENERGY

WHAT IS AT RISK:
- Public Safety: Extreme storms can cause landslides, floods, and other hazards that damage roads, bridges and power lines, endanger lives, and cut off access to vital goods and services.
- Infrastructure: Extreme rain events and storms can erode roads, bridges and power substations and cut off electricity to homes and businesses.
- Power Substations: Extreme storms can cause power substation failures, and cut off power to homes and businesses.
- Bridges and Culverts: Extreme storms can cause power substation failures, and cut off electricity to homes and businesses.
- Energy Efficiency: Energy efficiency in buildings can reduce energy costs and save money on cooling and heating.
- Renewable Energy: Build large renewable energy projects (e.g., wind farms) locally, and expand energy options to help minimize fuel costs.

WHAT WE CAN DO:
- Emergency Preparedness: Help residents in case minor or severe flood and debris, and extreme storms become more common. Inhabitants are encouraged to plan and prepare for severe weather events.
- Elevated Infrastructure: Select sites on higher ground for water and electrical systems.
- Road Design: Design and build infrastructures to reduce flooding and other hazards.
- Energy Efficiency: Use energy-efficient building materials and encourage retrofitting existing buildings.
- Renewable Energy: Build large renewable energy projects (e.g., wind farms) locally.

TELL US YOUR IDEAS:
What additional actions can individuals and their communities take to reduce these risks and enhance resiliency? Please fill out a card at tonight’s meeting or complete an online survey (www.trpc.org/climate).
WHAT IS AT RISK:

- **Infrastructure:** Wildfires can destroy or damage homes, power lines, forests, and other important buildings and infrastructure.
- **Human Health:** Longer, hotter, and drier summers can increase the number and severity of wildfire and extreme heat events. The elderly and homeless are especially vulnerable.
- **Agriculture:** Extreme heat events can damage or kill crops and livestock.

WHAT WE CAN DO:

- **Burn Ban:** Extend and enforce burn bans during periods of drought and/or extreme heat.
- **Wildfire Planning:** Enhance training and financial support for wildfire response efforts.
- **Outreach and Education:** Increase public outreach and education efforts about how extreme heat and other climate impacts affect human health and welfare. Awareness can influence behavior.
- **Public Safety:** Increase the availability and community awareness of cooling shelters (e.g., schools and community centers) that can serve vulnerable and special needs populations during the hottest days of the year.
- **Increase Tree Canopy:** Plant drought-tolerant trees and other landscaping that provide cooling shade. This also helps reduce the urban heat island effect, absorb stormwater, improve air quality, and reduce maintenance costs.

WHAT IS AT RISK:

- **Stormwater:** Heavier rainfall and runoff can overwhelm stormwater systems (e.g., roadside swales, drains, and pipes), especially in urban communities.
- **Wildlife Habitat:** Heavier rainfall and runoff can erode streambeds and streambanks and degrade sensitive habitat for fish and wildlife. Stormwater drainage can also pollute waterways.
- **Roads and Homes:** Heavier rainfall and saturated soil can trigger landslides that endanger homes, roads, and lives near steep slopes. Sea-level rise and wave exposure raise such risks for coastal bluffs.
- **Marshes and Estuaries:** Sea-level rise can cause low-lying coastal areas to be underwater more frequently and for longer periods of time. This can turn our region's coastal marshes and forests into mudflats and alter habitat for birds and other animals.

WHAT WE CAN DO:

- **Stormwater:** Design, install, and maintain stormwater infrastructure that can manage larger rain events, as well as capture and filter runoff on site (e.g., porous pavement, bioswales, rain gardens). Retrofit existing stormwater infrastructure.
- **Habitat Restoration:** Restore native trees, bushes, and other vegetation along freshwater and marine shorelines to help control flooding, stabilize banks, and filter out pollutants.
- **Stabilize Slopes:** Locate new homes and roads farther from steep slopes near lakes, rivers, streams, and Puget Sound. Maintaining trees and other vegetation helps slow the erosion of these areas.
- **Coastal Transition:** Remove or retrofit roads and other barriers to support the inland migration of coastal estuaries as sea levels rise.

TELL US YOUR IDEAS:

What additional actions can individuals and their communities take to reduce these risks and enhance resiliency? Please fill out a card at tonight’s meeting or complete an online survey (www.trpc.org/climate).

Figure XX: People who attended the April 17 community forum at Lacey’s South Sound Community College campus wrote what a resilient community means to them. Source: TRPC
Replant forests with drought resistant species. Set up rain water harvesting systems & grey water recycling systems. Install water use monitors to create awareness of how much water they are using. Install shower timers.

The port has a lot of property that could be used for agriculture. Develop local food processing facilities for local farmers to use.

Regulations/Fines for water use priorities - value shifting. Learn about solutionaryrail.org. Reduce rail time to Seattle down to one hour. Expand more Sound Transit to Thurston.

Water retention/bio diversity ponds that absorb flooding (yauges). Flooding alert. Previous pavement? Plant tree crops that are more drought resistant and are resilient to extremes. European old English Walnuts are grafted onto a Black Walnut (U.S. native) rootstock to protect against weather extremes.

Install rain & gardens and other low impact development strategies. Set up rain water harvesting systems & grey water recycling systems. Install water use monitors to create awareness of how much water they are using. Install shower timers.

Install driving infrastructure with trains, light rails, cross-city trains. Make it less money, make it fun. Pedestrian options!

The port has a lot of property that could be used for agriculture. Develop local food processing facilities for local farmers to use.

Regulations/Fines for water use priorities - value shifting. Learn about solutionaryrail.org. Reduce rail time to Seattle down to one hour. Expand more Sound Transit to Thurston.

Water retention/bio diversity ponds that absorb flooding (yauges). Flooding alert. Previous pavement? Plant tree crops that are more drought resistant and are resilient to extremes. European old English Walnuts are grafted onto a Black Walnut (U.S. native) rootstock to protect against weather extremes.

Work out your own transportation alternative plan for when usual transportation is interrupted.

Build with greater resilience in mind in how you site buildings and structures. Teach youth/people to withstand temps! Reserve energy systems for elderly and disabled. Encourage innovation by creating personalized community cooling and fire suppression systems.

More P.R. so more people really get this. Support local food supply and local reliant economics to inter regional transportation is not the only things we’re relying on.

Plant trees and bushes to homeowners by watershed creek/river/etc.

Wildfire - fire safety regulations/teaching. Extreme heat - make this a “fun” and engaging concept.

Continue planting shade trees for riparian zones to help control summer water temps in streams and rivers to help protect fisheries.

Re-evaluate our landscaping designs and specs for low water use plants and retain trees.

Be prepared to relocate move intra-regionally or inter regionally.

Restore estuaries. Preserve mature woodlands and wildlife corridors.

Provide young trees and bushes to homeowners by watershed creek/river/etc.

Re-evaluate our landscaping designs and specs for low water use plants and retain trees.

Be prepared to relocate move intra-regionally or inter regionally.

Restore estuaries. Preserve mature woodlands and wildlife corridors.

Help neighborhoods maintain woods while also being safe.

Provide young trees and bushes to homeowners by watershed creek/river/etc.

Re-evaluate our landscaping designs and specs for low water use plants and retain trees.

Be prepared to relocate move intra-regionally or inter regionally.

Figure XX. The comments above were collected during TRPC’s April 2017 public forum in Lacey. The project team considered these and other comments for plan actions.
5. Actions

5.1 Action Evaluation & Prioritization

In late spring 2016, the project team drafted more than 100 adaptation actions for the Stakeholder Advisory Committee’s consideration. Action ideas came from community members, climate plans from around the country, and other sources.

Figure XX. Smoke rises from an August 22nd wildfire near Grand Mound. The fire came amid a record dry spell in the region—more than 50 days without measurable precipitation.
The committee added, removed and revised actions. Next, the committee used common criteria [See Figure XX] to evaluate the actions and an online survey to prioritize them. This collaborative exercise yielded a final list of 90 adaptation actions, including 25 priority actions.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Answer Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude:</td>
<td>How many risks does this action address? One, Few, or Many</td>
</tr>
<tr>
<td>Effectiveness:</td>
<td>Is this action a long-term solution (i.e., durable)? Yes or No</td>
</tr>
<tr>
<td>Effectiveness:</td>
<td>To what degree would this action reduce the risks? Low, Medium, High</td>
</tr>
<tr>
<td>Effectiveness:</td>
<td>Is this action already being taken? Yes or No</td>
</tr>
<tr>
<td>Side-effects:</td>
<td>Would this action have negative effects on other goals? Yes or No</td>
</tr>
<tr>
<td>Side-effects:</td>
<td>Would this action have positive effects on other goals? Yes or No</td>
</tr>
<tr>
<td>Equity:</td>
<td>Would the costs and benefits of this action be shared equally? Yes or No</td>
</tr>
</tbody>
</table>

Figure XX: The project team assigned a positive or negative numeric value to each criterion, which resulted in a net score for each action. This exercise helped the stakeholder committee prioritize the actions. Source: TRPC

5.2 Action Tables

The action tables that follow include steps individuals, neighborhoods, cities, and the broader community can take to prepare for and adjust to adverse climate impacts — the very definition of “adaptation.” The project’s 22-member Stakeholder Advisory Committee drafted and prioritized the 90 actions, incorporating the science-based vulnerability and risk assessments and community member ideas.

The tables’ “Lead” and “Partner” rows recommend community stakeholders who should take the action. The “Timeframe” row recommends when the community stakeholders should take the action. The “Stressor” row lists stressors (e.g., increasing drought) to which the action responds. See the actions legend at the end of this section for a description of the lead, partner, timeframe, and stressor terms. See the Action-Risk Report (Appendix E) for the full list of the actions and the specific stressors and risks to which they respond.

The Thurston Climate Adaptation Plan’s first and foremost action (A-01, below) calls for updating the plan periodically to ensure it remains a relevant reference tool for our region.

Update the regional climate adaptation plan periodically with new information, evaluate implementation efforts and effectiveness, amend strategies and actions as necessary, and enhance community climate literacy (e.g., by working with schools, libraries, and other partners to enhance the public’s understanding of climate change causes, impacts, and responses). The plan should serve as a reference tool for local policymakers and the public. The document should be updated every five years to stay relevant.

The remaining 89 actions are grouped into six thematic categories:

- **General**
- **Drought & Water Quality**
- **Flood & Erosion**
- **Plants & Animals**
- **Transportation & Energy**
- **Wildfire & Extreme Heat**

Actions marked with a star are “Priority Actions,” as identified by the Stakeholder Advisory Committee. These are the most important actions the region should take to remain resilient.

While all actions are advisory recommendations, municipalities and other policymaking organizations may choose to adopt and integrate the actions into their respective codes, policies, and other regulations.

General Actions

The general actions that follow address a range of climate risks across several thematic categories. Such actions improve adaptation broadly by incorporating climate science into local planning and decision-making processes.

G-01

Direct government staff members to develop their technical expertise and skills to prepare for and respond to climate change impacts.

With clear policy direction from local and tribal government policymakers, staff members could invest in professional development that enhances their understanding of projected changes in the region’s climate (e.g., air temperature and precipitation) and their impacts on municipal services and infrastructure. Staff members could use the skills and knowledge to protect human health and welfare, as well as adequately plan, design, build and maintain roads, culverts, and other assets.

LEAD: Cities/Towns, County, Tribes

PARTNER: State, Federal, TRPC

TIMEFRAME: Underway (limited)

STRESSOR: Sea-Level Rise, Intensifying Precipitation, Increasing Drought, Population Change, Warmer Winter

G-02

Create hazard recovery plans and prioritize the restoration of vital public safety facilities and other essential community assets (e.g., hospitals and major bridges).

As part of this action, ensure that all appropriate personnel — including municipal public works, planning, and public health workers — have adequate training and gear (e.g., reflective vests, hard hats, and agency vehicles) to respond to emergencies.

LEAD: Cities/Towns, County, Tribes

PARTNER: State, Residences, Fire Districts, LOTT PWS, Port, Water Providers, Transit, Business Community, K-12, TRPC

TIMEFRAME: Underway (limited)

STRESSOR: Sea-Level Rise, Intensifying Precipitation, Warmer Summer, Increasing Drought
Pursue funding to implement highest-priority actions identified in the adopted Hazards Mitigation Plan for the Thurston Region. This action would improve the region’s resilience, its ability to recover more quickly and fully from hazards. Visit trpc.org/hazards to view a list of countywide and local partner actions.

Factor climate impacts into the planning of operations and the coordination of disaster response and recovery activities among first-responders, including public health, law enforcement, fire, and emergency medical services personnel.

Examples of activities include: updating emergency services communications equipment; enhancing training of emergency personnel and other responders; taking regular inventory of emergency facility needs (e.g., cooling centers and temporary shelters); assessing and improving the adaptive capacity of people who are most vulnerable to climate change-exacerbated hazards (e.g., people who are homeless, elderly, socially isolated, and/or live in high-risk areas).

Assess potential climate change-induced population migration within and to the Thurston Region, and evaluate response strategies.

This action could entail assessing who in the region is most vulnerable to temporary or permanent displacement (e.g., low-income or socially isolated residents who may be forced to move because of climate-exacerbated hazards) and what resources they might need. This action could also entail assessing who is most likely to move to the region and how to accommodate them in ways consistent with community values. For example, this could be done by studying “chain migration” (the tendency of migrants to follow those of similar ethnicity, language or job skills), as well as by evaluating such migrants’ needs and how much growth should occur so that it’s consistent with local comprehensive plans. TRPC could integrate such analysis into its periodic population and employment forecasts. For more information, visit: http://www.trpc.org/236/Population-Employment-Forecasting.

Create a household preparedness plan and store of food, water, and other supplies (lanterns, bicycles, etc.) to use in case a flood or other hazard cuts off access to goods, services, and emergency responders.

Municipalities, neighborhood associations, and their partners (e.g., the American Red Cross) can encourage these household preparedness practices by enhancing outreach and incentives. See TRPC’s online Resilience Toolkit (trpc.org/climate/resiliencetoolkit) for links to preparedness resources.

Identify a neighborhood site (e.g., a school or other location that’s safe, accessible, and well-known) to serve as a temporary coordination center for local hazard response and recovery efforts, and publicize emergency coordination sites.

This action could help increase household and neighborhood resilience, in the event that police and fire personnel cannot provide immediate assistance.

Encourage residents to organize or participate in regular emergency preparedness, response, and recovery planning and training events.

Such events can include neighborhood block parties with disaster drills, skills sharing, and discussions about hazards (extreme heat, wildfires, etc.) with local emergency responders.

Increase the number of residents who receive Community Emergency Response Team (CERT) training to improve local hazard preparedness, response, and recovery efforts. Ensure such efforts are ongoing.

This action would help increase household and neighborhood resilience, in the event that police and fire personnel cannot provide immediate assistance.

Factor climate impacts into the full life-cycle costs of roads, buildings, parks, and other assets — from their initial siting and design to their ongoing operations and maintenance.

The Thurston Climate Adaptation Plan, which should be updated periodically by TRPC (See Action A-01), will serve as a regional reference guide for understanding local climate impacts and asset risks. By considering such impacts (e.g., projected sea levels), public- and private-sector property owners will be better able to protect their assets and reduce operations and maintenance costs.

Increase incentives to make urban infill and redevelopment projects more viable financially.

Incentives could include, but are not limited to, tax credits and fee waivers for infill and redevelopment projects, as well as stormwater control transfer programs (e.g., Redmond, Washington’s stormwater mitigation banking program).

Infill and redevelopment projects within urban centers and corridors inside of the urban growth areas enhance residents’ resilience by providing better access to transportation options and services (e.g., food stores, hospitals, and emergency responders). Such projects also have potential climate mitigation benefits, enabling residents to drive fewer miles and reduce their transportation-related greenhouse gas emissions.

Encourage neighborhoods to become familiar with residents who have skills and tools to assist others with special needs (e.g., elderly or disabled), should residents need to provide emergency response in the event that police and fire personnel cannot provide immediate assistance.

Programs such as “Map Your Neighborhood” are effective ways to develop maps and inventories/directories of neighborhood assets. [Thurston County Emergency Management Map Your Neighborhood: http://www.co.thurston.wa.us/em/MYN/MYN.htm]
Drought & Water Quality Actions

Projected shifts in seasonal precipitation and temperature (e.g., warmer, wetter winters and hotter, drier summers) threaten the region’s water quality and quantity. Impacts include:

- **Groundwater**: Bigger winter storms can result in more runoff and less infiltration into aquifers. Summer droughts, in turn, could spur more groundwater pumping. Such direct and indirect climate impacts, coupled with sea-level rise, make Thurston County’s water resources more vulnerable to water quality and quantity risks.

- **Surface water**: Changes in water volume and temperature threaten to scour streams and spur algal blooms that can degrade critical habitat for fish and wildlife, including salmon.

The following actions can help the region reduce and respond to these and other climate impacts identified through the project’s vulnerability and risk assessments.

G-13 Align land use, hazard mitigation, transportation, capital improvement, and other plans so that they take into account climate change and work toward the same goals.
This action, in which TRPC could take the lead as a coordinating body, would help ensure consistent interjurisdictional and interagency planning and policymaking with regard to climate change mitigation and adaptation.

LEAD: Cities/Towns, State, Federal, Tribes
PARTNER: County, Nonprofits, Residents, Higher Education, Port, Transit, Business Community, K-12, TRPC, Development Community
TIMEFRAME: Underway
STRESSOR: Increasing Drought, Intensifying Precipitation, Population Change

G-14 Expand ability to predict drought and flood events by tracking soil moisture, streamflow, precipitation, groundwater levels, tide levels, well levels, reservoir levels, and weather forecasts.
The City of Olympia proposes working with the Port of Olympia and the U.S. Geological Survey (USGS) to establish a tide gauge in Olympia.
Additionally, the National Oceanic & Atmospheric Administration (NOAA) hosts the online Water Resources Dashboard — which includes maps and data that can help local resource managers monitor for the potential for extreme precipitation and drought events: https://toolkit.climate.gov/topics/water-resources/water-resources-dashboard.

LEAD: County
PARTNER: Cities/Towns, State, Federal, Higher Education, Tribes, TRPC
TIMEFRAME: Short
STRESSOR: Sea-Level Rise, Increasing Drought, Intensifying Precipitation, Warmer Summer, Warmer Winter

G-15 Create a website that details health risks exacerbated by climate change and provides information that helps residents prepare for and respond to drought, poor air quality, extreme heat, disease vectors, and other threats.
This action would improve the region’s climate literacy and resilience.

LEAD: County
PARTNER: Cities/Towns, State, Federal, Tribes, Residents, Business Community, Agricultural Community
TIMEFRAME: Underway Limited
STRESSOR: Sea-Level Rise, Increasing Drought, Intensifying Precipitation, Warmer Summer, Warmer Winter

G-16 Develop a countywide disaster debris management plan with actions to dispose of or recycle materials (organic and artificial) efficiently after a disaster.
This action would improve the region’s resilience, its ability to recover quickly and fully from hazards.

LEAD: County
PARTNER: Cities/Towns, PSE, State, Federal, Tribes, Residents, Business Community, Agricultural Community
TIMEFRAME: Underway Limited
STRESSOR: Sea-Level Rise, Intensifying Precipitation, Increasing Drought, Population Change

G-17 Advocate for expanding the eligibility of federal disaster-assistance funding to allow for the replacement or relocation of aging or vulnerable infrastructure before it fails.
This includes facilities such as water infrastructure, fire stations, transportation infrastructure, emergency coordination shelters, and buildings that are used as emergency shelters.

LEAD: County
PARTNER: Cities/Towns, PSE, State, Federal, Tribes, Residents, Business Community, Agricultural Community
TIMEFRAME: Underway Limited
STRESSOR: Sea-Level Rise, Intensifying Precipitation, Increasing Drought, Population Change

D-01 Develop and implement a comprehensive drought-response strategy that sets action levels for different drought stages.
Thurston County experienced moderate or more extreme drought conditions in the summer months nine out of the last sixteen years, including the last three consecutive years. Climate change and population growth will exacerbate these water shortages.
A possible funding source for this action is the Washington Department of Ecology’s Watershed Planning Implementation and Flow Achievement grant; the next funding cycle is 2019-2021.

LEAD: Cities/Towns, County
PARTNER: State, Federal, Neighborhoods, Fire Districts, LOT, Water Providers, Business Community, Tribes, TRPC
TIMEFRAME: Short
STRESSOR: Increasing Drought

D-02 Evaluate and secure sustained funding to support long-term monitoring of ground and surface water quality and quantity.
This action includes enhancing monitoring of water volume, temperature, and pollution in streams, lakes, and Puget Sound. Existing resources include:
The state Department of Ecology measures changes in the Puget Sound lowland streams and urban shoreline areas as a result of stormwater management: http://www.ecy.wa.gov/programs/wq/stormwater/municipal/ramp/status.html.
Thurston County conducts data analysis and regular monitoring of specific lakes, rivers, and streams: http://www.co.thurston.wa.us/health/ehswat/water.html.

LEAD: Cities/Towns, County
PARTNER: State, Federal, Fire Districts, Port, Water Providers, Transit, Tribes, K-12
TIMEFRAME: Short
STRESSOR: Sea-Level Rise, Intensifying Precipitation, Warmer Summer, Increasing Drought
In the north Thurston County area, the LOTT Clean Water Alliance produces reclaimed water. LOTT’s partner cities — Lacey, Olympia, and Tumwater — operate reclaimed water utilities and purvey the water to customers for reuse.

LEAD: Cities/Towns, LOTT
PARTNER: County, Neighborhoods, Residents, Higher Education, Business Community
TIMEFRAME: Long
STRESSOR: Increasing Drought, Population Change

Drought, Population Increasing
STRESSOR: Underway
TIMEFRAME: Long
PARTNER: Cities/Towns, County, LOTT, Water Providers
STRESSOR: Increasing Drought, Population Change

Increase reuse of reclaimed water for irrigating plants, supplementing low streamflow, and other purposes.

This action would provide a clear price signal and support conservation.

Incentivize new commercial construction to include on-site rainwater harvesting facilities.

This action would reduce runoff and provide a source of water for irrigating plants and flushing toilets.

Install efficient plumbing fixtures and equipment in buildings so as to conserve water.

The Uniform Plumbing Code, part of the Washington State Building Code, sets maximum water consumption levels for new faucets, toilets, showerheads, and other plumbing fixtures in buildings. The LOTT Clean Water Alliance provides free water-saving kits (showerheads, leak-detection kits, etc.) to rate-payers within its Lacey, Olympia and Tumwater service area. LOTT also provides rebates to residential, commercial, industrial, and institutional rate-payers who install water-saving toilets, appliances, and other equipment. For more information, visit http://lottcleanwater.org/programs.

Evaluate and offer new incentives for residents to install rain gardens on well-draining soils and plant drought-tolerant landscaping (e.g. xeriscaping) to adapt to changes in seasonal precipitation.

Incentives can include utility rebates or credits. [U.S. EPA has published a handbook with “Water-Smart” landscaping tips for rain gardens and other parts of the yard: https://www3.epa.gov/watersense/docs/water-efficient_landscaping_508.pdf]

Construct new water-storage systems (e.g., large cisterns, water towers, and reservoirs) to provide back-up water supplies during droughts.

Per state law (RCW Title 90), a municipality or other party would need state approval to store and withdraw water that exceeds its allocated water rights.
Expand Thurston County's septic system operation and maintenance education and outreach programs.

- Climate models project more frequent and intense rain storms, which could oversaturate drain fields around septic tanks and cause them to flood, overflow, and release pollutants into surface waters. A 2016 report by Thurston County and TRPC — Deschutes Watershed Land Use Analysis: Scenario Development Report — estimated that it would cost about $43,000 annually to administer a voluntary septic system operation and maintenance program in the Deschutes Watershed alone.

Reduce zoning density for parcels (i.e., "downzone") and lower limits for impervious surfaces near streams and lakes with nutrient-loading problems.

- When considering whether to take this action, which would mitigate the combined impacts of water pollution and warming, government agencies should consider whether it would result in more impervious surfaces elsewhere.

Facilitate new residential water connections to municipal sources, where feasible.

- This action would help protect water quality and quantity.

Incentivize water metering for all wells.

- Metering all wells, either through voluntary or regulatory means, would help fill water usage data gaps and provide water managers with information they can use to ensure there is sufficient supply to meet demand (water for people, fish, and other users). Every municipal water supplier in Washington — i.e., Group A water systems with at least 10 service connections — must install a source meter that shows total system production, as well as install service meters that show authorized consumption for each connection (e.g., a single-family home). All new Group B water systems — those with multiple, but fewer than 15 connections, often in less-urbanized areas — must install a source meter as well.

- Most of Thurston County’s Group B systems have source meters, in compliance with state law, but such systems are not required to report their production data to state and local governments. Few of Thurston County’s Group B systems have individual service meters, which are not required by state law.

- About a quarter of Thurston County’s wells are considered "permit-exempt" and are not in a Group A or B water system. Washington’s groundwater permit exemption (RCW 90.44.050) allows for single or group domestic well water use up to 5,000 gallons per day in a Group A or B water system. Thurston County’s Group B systems have source meters, in compliance with state law, but such systems are not required to report their production data to state and local governments. Few of Thurston County’s Group B systems have individual service meters, which are not required by state law.

Flood & Erosion Actions

Projected rising sea levels and heavier rain events increase the risk of flooding, erosion, and landslides that threaten people, plants, and animals. Impacts include:

- **Stormwater:** Heavier rainfall and runoff can overwhelm stormwater systems (e.g., roadside swales, drains, and pipes), especially in urban communities.

- **Wildlife Habitat:** Heavier rainfall and saturated soil can trigger landslides that endanger homes, roads, and lives near steep slopes. Sea-level rise and wave exposure magnify risks for coastal bluffs.

- **Roads and Homes:** Heavier rainfall and runoff can erode streambeds and streambanks and degrade sensitive habitat for fish and wildlife.

- **Marshes and Estuaries:** Sea-level rise can cause low-lying coastal areas to be under water more frequently and for longer periods of time. This can turn our region’s coastal marshes and forests into mudflats and alter habitat for birds and land animals.

The following actions can help the region reduce and respond to these and other climate impacts identified through the project’s vulnerability and risk assessments.

Evaluate and secure sustained funding to restore and protect riparian vegetation along freshwater and marine shorelines.

- Plant buffers stabilize banks, provide shade and flood storage, slow and filter polluted runoff, store carbon emissions, and enhance air quality. A municipality, for example, could add a vegetation surcharge to its stormwater utility rate to fund restoration of these riparian areas.

Incorporate projected sea-level rise and flooding information into the designation of regulatory hazard areas.

- Development and activities typically required to be set back and/or buffered from regulated hazard areas, such as floodplains, marine shorelines, and high groundwater areas, which are determined by historic water level information. This action could involve updating regulations to better reflect projections about how water levels may change (e.g., the Ordinary High Water Mark [OHWM], the 100-year floodplain or channel migration area) in order to ensure new homes and other development are located appropriately for future conditions.
Design new and replacement stream culverts and other drainage infrastructure to accommodate projected higher peak flows associated with more frequent and intense heavy precipitation events. This action would improve fish passage and reduce flooding that occurs when debris blocks culverts.

Install flood gates and pumps on stormwater outfalls connected to Puget Sound to mitigate back-ups during high tides and heavy rains exacerbated by rising seas. This action, to be considered as part of the City of Olympia’s sea-level rise response strategy for downtown (2018), would help reduce flooding and its impacts on public budgets and mobility.

Build floodwalls or other protective structures around critical facilities located in areas vulnerable to flooding as a result of sea-level rise and heavy precipitation. This action will be considered as part of the City of Olympia’s sea-level rise response strategy for downtown (2018). Local policymakers could utilize best available science to evaluate site-specific responses, which could include walls, berms, or other “hard” or “soft” structures. As a follow-up to this action, policymakers could identify and set aside areas to receive critical facilities that could be moved at the end of their useful lifespan.

Increase education and enforcement efforts to ensure that commercial and residential building owners properly maintain low-impact development (LID) facilities that treat stormwater runoff on site. Chapter 16.80 of the Olympia Municipal Code, which focuses on reducing damage from sea-level rise, requires that all new buildings have the lowest floor (including basement) protected from flooding or elevated to 16 feet or greater. Other parts of the county could replicate this requirement.

Assess drinking water wells’ vulnerability to saltwater intrusion and inundation from rising sea levels, and develop adaptation measures (e.g., relocating wells). This action would help ensure drinking water supplies are sustainable.

For sites where elevating or relocating a building is not a viable option in response to flood risks, acquire the property, use the land for appropriate uses (e.g., flood storage or agriculture), and help the occupants resettle in the community. This action would help protect public welfare and physical assets while mitigating flood risks.

Implement brownfield clean-up strategies/planned actions for low-lying sites that are most vulnerable to sea-level rise. This action would reduce the risk of water contamination from polluted coastal sites that become inundated with seawater.

Protect important historical or cultural sites that are at risk of coastal or inland flooding, erosion, and wildfires. Options can include allowing inundation of the site, relocating the structure, or stabilizing the site’s shoreline with vegetation, rip-rap or other materials.

Limit construction of buildings and roads in areas where flood and landslide risks are highest. This action would reduce the risk of infrastructure damage from floods and landslides exacerbated by changes in precipitation timing, type and volume.

Identify where and how the region could support the natural inland transition of coastal lowlands to estuaries as sea levels rise. Supportive actions can include modifying artificial barriers such as roads, as well as purchasing vulnerable properties (e.g., low-lying agricultural lands) that could transition to estuaries over time.

Construct flood-storage facilities (e.g., wetlands or artificial ponds) upstream of concentrated development areas that are at risk of flooding. This action would reduce the risk of flooding and protect downstream built and natural assets.
Plants & Animals Actions

Projected changes in temperature and precipitation threaten the health and resilience of our region’s plants and animals. Impacts include:

- **Shellfish**: As the ocean becomes warmer and more acidic, shellfish have a harder time developing shells. Land-borne pollution can exacerbate such threats and make shellfish toxic and dangerous to consume.

- **Agriculture**: Crop yields and harvests can decrease or fail when summers are drier and hotter for longer periods of time. Extreme heat and flooding also threatens cattle, horses, and other large livestock.

- **Vegetation**: Warmer, drier summers can stress sensitive plants and habitat, including riparian vegetation and urban landscaping. This can leave them more vulnerable to extreme heat, pests, and pathogens.

The following actions can help the region reduce and respond to these and other climate impacts identified through the project’s vulnerability and risk assessments.

F-15 Minimize development, disturbance, and vegetation removal on or near steep slopes (>25% gradient) adjacent to waterbodies.
- LEAD: Cities/Towns, County, State, Tribes
- PARTNER: Federal, Residents, TRPC, Development Community
- TIMEFRAME: Short
- STRESSOR: Sea-Level Rise Intensifying Precipitation

This action would reduce the risks of landslides and sediment runoff.

F-16 Retrofit or reroute pedestrian/bicycle trails and bridges in areas that are subject to repetitive flooding and/or landslides.
- LEAD: Cities/Towns, County
- PARTNER: State
- TIMEFRAME: Short
- STRESSOR: Sea-Level Rise, Intensifying Precipitation

This action would help protect public welfare.

F-17 Decouple remaining combined storm and sewer systems, where cost-effective, so as to add capacity and mitigate back-ups and water-borne disease outbreaks.
- LEAD: Cities/Towns, LOTT
- PARTNER: --
- TIMEFRAME: Long
- STRESSOR: Sea-Level Rise, Intensifying Precipitation

This action would help protect the LOTT Clean Water Alliance’s downtown Olympia treatment plant from marine water inundation during coastal flood events exacerbated by rising seas and heavy rains. Marine water would kill the plant’s biological wastewater treatment process.

P-01 Increase funding, education, and incentives for private landowners to manage lands in ways that enhance ecological and economic resilience (e.g., protecting and restoring forests, prairies, and shoreline/riparian areas).
- LEAD: Cities/Towns, County, State, Higher Education, Tribes, TCD
- PARTNER: Nonprofits, Neighborhoods, Residents, Agricultural Community
- TIMEFRAME: Long

Incentives can include expanding Thurston County’s Transfer of Development Rights (TDR) program, conservation easement funding, as well as expanding market-based approaches for ecosystem service payments or credits (e.g., for water quality, carbon sequestration and flood management).

P-02 Use best-management practices, such as installing large woody debris in rivers, to improve water temperature, streamflow, and channel conditions.
- LEAD: State, Nonprofit
- PARTNER: County, Residents, Tribes, Agricultural Community, TCD
- TIMEFRAME: Underway (limited)
- STRESSOR: Intensifying Precipitation, Increasing Drought, Warmer Winter

Placing large woody debris in rivers alters the flow of water, digs out cooler pools for fish to rest, and creates sediment-free riffles for fish to spawn. It will be necessary to choose proper sites and structures that do not cause flooding.

P-03 Create/update basin plans that integrate climate impacts, and include goals and targets for protecting natural resources and habitat.
- LEAD: Cities/Towns, County, State, TRPC
- PARTNER: State, Residents, Development Community, Agricultural Community
- TIMEFRAME: Short

This action would ensure that region continues to assess how climate change affects watersheds and takes measurable steps to protect the water, plants (e.g., riparian areas), and animals within.

P-04 Implement monitoring practices that provide early detection of invasive species on land and in water, and expand biological control and manual removal of such plants and insects.
- LEAD: Cities/Towns, County, State, Federal, Higher Education
- PARTNER: Nonprofits, Neighborhoods, Agricultural Community
- TIMEFRAME: Underway (limited)
- STRESSOR: Increasing Drought, Warmer Winter, Warmer Water

This action would help halt the spread of invasive plant and insect species that thrive in a warmer climate.
The Nisqually Estuary has Thurston County’s only significant eelgrass beds. Water, sequester carbon dioxide, and improve fish habitat and survival. Protect and enhance marine vegetation, such as eelgrass, so as to help clean water, sequester carbon dioxide, and improve fish habitat and survival. The Nisqually Estuary has Thurston County’s only significant eelgrass beds.

Transportation & Energy Actions

Projected extreme precipitation events threaten to increase the frequency and intensity of floods, landslides, and other hazards that damage roadways and power lines, endanger lives, and cut off access to vital goods and services. Impacts include:

- **Public Safety:** Collapsed hillsides, downed trees, and other hazards can hinder police and other emergency responders’ access to residents.
- **Power Substations:** Extreme rain events, coupled with sea-level rise, can flood coastal power substations and cut off electricity to homes and businesses.
- **Bridges and Culverts:** Extreme rain events and stormwater runoff can scour streams, damage bridges, and block culverts with debris.
- **Energy Security:** Longer, hotter summers can reduce hydropower production and increase electricity demand to cool buildings. This raises the risk of power outages and increases the overall cost of energy.

The following actions can help the region reduce and respond to these and other climate impacts identified through the project’s vulnerability and risk assessments.

P-05 Evaluate additional assisted migration of vulnerable plant and animal species to suitable habitat.

This action would help ensure species survival as changes in temperature and precipitation shift the location of suitable habitat.

P-06 Expand efforts to monitor the cause and extent of changes in native and invasive plant distribution.

This action would help land managers select and implement effective actions to ensure the survival of native plants.

P-07 Increase organic matter content and water retention in soils within urban and agricultural settings.

Integrating perennials into cropping systems such as grass forages, cover cropping, compost application and conservation tillage help improve water infiltration and storage, as well as increase soil organic matter content and carbon sequestration.

P-08 Increase urban agriculture and biointensive farming methods to maximize crop yields and ecosystem services.

Municipalities and their partners can encourage such practices by providing technical support and incentives.

P-09 Protect and enhance marine vegetation, such as eelgrass, so as to help clean water, sequester carbon dioxide, and improve fish habitat and survival.

The Nisqually Estuary has Thurston County’s only significant eelgrass beds.

P-10 Educate waterfront property owners about the benefits of voluntary oyster seeding and other shellfish production, and encourage such practices.

This action would help improve water quality and sustain the region’s shellfishery, which are threatened by ocean acidification and land-borne pollution.

P-11 Support Voluntary Stewardship Program (VSP) implementation to encourage conservation of agricultural lands and critical areas (e.g., riparian stream buffers) that provide ecosystem services.

Under the VSP program, which was created via state law, Thurston County works with landowners to develop voluntary, site-specific plans to protect critical areas on agricultural lands.

P-12 Grow woody perennial crops that help conserve water, store carbon, and provide other ecosystem services.

This action — which includes planting fruit trees and other crops whose woody stems and branches don’t die off each winter — has both climate adaptation and mitigation co-benefits.

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter

Lead: County, State, Federal, Higher Education, Tribes

Partner: Nonprofits, Residents, Development Community

Timeframe: Underway (limited)

Stressor: Intensifying Precipitation, Increasing Drought, Warmer Summer, Warmer Winter
Integrate this lifeline transportation route map’s data into the Thurston County Emergency operations plan, and designate alternative travel routes for critical infrastructure that is vulnerable to repeated floods and/or landslides.

T-02

Provide additional utility incentives to support energy efficiency and renewable energy investments in buildings.

Thurston County’s electric utility, Puget Sound Energy, could offer new incentives to help building owners cover the cost of investing in energy efficiency (e.g., installing new windows and insulation) and installing solar panels, small-scale wind turbines, and other equipment that generates electricity on site from clean, renewable resources.

Washington state law allows “on-bill” financing, for example, in which an electric utility provides a loan to the owner of a commercial or residential building to invest in on-site renewable energy generation and efficiency upgrades. The borrower, which pays back the loan on its electric bill, saves money over time as it reduces its need for utility-provided electricity. This, in turn, reduces pressure on the utility to invest in generation from new sources (e.g., coal and natural gas power plants).

T-03

Offer additional utility rebates or bill credits to induce residents to buy and install energy-efficient appliances and other equipment.

Thurston County’s electric utility, Puget Sound Energy, could provide residential rate-payers additional financial incentives to buy and install energy-efficient light bulbs, clothes dryers, air conditioners, and other equipment that saves energy and lowers bills. To enhance equity, PSE could increase incentives for low-income renters and homeowners.

T-04

Elevate, reinforce or relocate important electrical equipment that is within critical areas at risk of flooding and/or landslides.

Examples of such critical electrical equipment include underground power lines and low-elevation substations near the Puget Sound shoreline.

T-05

Map transportation infrastructure that is vulnerable to repeated floods and/or landslides, and designate alternative travel routes for critical transportation corridors when roads must be closed because of natural hazards.

Integrate this lifetime transportation route map’s data into the Thurston County Emergency Operations Plan and other local planning efforts.

T-06

Relocate or retrofit low-lying roads vulnerable to coastal or inland flooding.

This action, for example, could include relocating or raising Interstate 5 at the Nisqually Estuary and U.S. Highway 101 at Mud Bay (e.g., building taller, longer bridges). Such near-shore areas are vulnerable to coastal flooding exacerbated by sea-level rise and heavy precipitation.

T-07

Increase the energy efficiency of the region’s water infrastructure.

This action includes replacing pumps and other drinking water, wastewater, and stormwater systems that consume large amounts of energy.

T-08

Build additional large-scale renewable energy projects (e.g., utility-scale solar arrays and wind farms) in Thurston County.

Such clean-energy projects offset demand for electricity from polluting fossil fuels (coal and natural gas) and hydropower — which is vulnerable to less summer precipitation/lower streamflow.

T-09

Establish energy goals/benchmarks (e.g., LEED) for new buildings, and adopt permitting practices and building code and/or design guidelines that support clean and efficient energy practices and technologies (e.g., passive design, rooftop solar panels, electric vehicle charging stations).

This action, which could be taken by tribal, state or local governments, would reduce building electricity consumption and demand/costs for utility-provided power.

T-10

Expand utility outreach to and education of commercial and residential power customers about the benefits of clean and efficient energy technologies and practices.

Generating electricity from clean, renewable resources (e.g., the wind and sun) — and using electricity more efficiently — helps reduce the region’s greenhouse gas emissions that contribute to global climate change. Such actions also offset demand for electricity Puget Sound Energy gets from polluting fossil fuels (coal and natural gas) and hydropower — which is vulnerable to less summer precipitation/lower streamflow.

T-11

** Develop and adopt policies that require residential and commercial properties to undertake an energy audit at the time of sale or during a substantial remodel.**

Tribes or local governments could require such energy audits. If the energy audits identify deficiencies, regulators could recommend energy retrofits to upgrade properties to a specified level.

T-12

Generate additional energy from waste products (e.g., woody biomass and sewage) in Thurston County.

LOTT’s wastewater-treatment plant, located in downtown Olympia, already captures methane to generate heat and electricity on site. Such projects offset demand for electricity from polluting fossil fuels (coal and natural gas) and hydropower — which is vulnerable to less summer precipitation/lower streamflow.
Through the project’s vulnerability and risk assessments. The following actions can help the region reduce and respond to these and other climate impacts identified in the region’s emergency medical services. The elderly and homeless are especially vulnerable.

Wildfire & Extreme Heat
Projected hotter and drier summers threaten to increase the number and severity of wildfire and extreme heat events that carry significant social, economic, and environmental costs. Impacts include:

- **Infrastructure**: Wildfires can damage or destroy homes, power poles, forests, and other important buildings and infrastructure.
- **Urban Heat Islands**: Extreme heat events make cities hotter, especially in densely developed areas. Hospitalizations and emergency service calls for heat-related illnesses can place increasing demands on the region’s emergency medical services. The elderly and homeless are especially vulnerable.
- **Air Quality**: Increasing drought raises the risk of wildfires and elevated levels of PM_{10} (coarse particulate matter) from smoke, which degrades air quality and threatens human health.

The following actions can help the region reduce and respond to these and other climate impacts identified through the project’s vulnerability and risk assessments.

W-01: Create and maintain a map of the region’s high-risk wildland urban interface communities and locations of wildfires.

Such a map can be used to regulate Firewise development practices (e.g., requiring building fire-suppression sprinklers and setbacks), as well as to educate property owners about wildfire risks.

W-02: Require new developments in high-risk wildfire areas to submit a fire-protection plan during site plan review.

This action would help reduce the risk of wildfire spreading to and damaging buildings.

W-03: Provide private forestland owners and residents living in Wildland-Urban Interface (WUI) areas information about fire prevention/Firewise practices, and encourage application of such practices.

Firewise is a program of the National Fire Protection Association (NFPA) and co-sponsored by the USDA Forest Service, the US Department of the Interior and the National Association of State Foresters. Firewise practices include limiting vegetation near homes and building such structures with flame-resistant materials.

W-04: Plant drought- and pest-resistant trees, shrubs, and grasses in parks, landscaping strips, and other urban areas.

Such vegetation reduces the need for watering, provides cooling shade, improves air and water quality, and supports flood storage/infiltration.

W-05: Adopt wildfire hazard overlay districts with development regulations (for new structures) based on factors such as slope, structure, and fuel hazards.

This action would reduce the risk of wildfire spreading to and damaging homes.

W-06: Lower the density of development allowed in areas with the highest risk of wildfires.

Overconsuming rural, unincorporated areas within the region’s Wildland-Urban Interface (WUI), the zone where natural areas and development meet, would decrease the number of homes and businesses at risk of fire damage. Overconsuming areas within city and town urban growth areas, however, may be in conflict with state Growth Management Act and local density goals.

W-07: Extend and enforce the rural burn ban when wildfire risks are high.

This action would lower the risk of wildfires during periods of extreme heat and drought.

W-08: Modify building codes, where necessary, to require fire sprinkler systems and enable emergency access/egress in all new residential and commercial construction.

This action would help mitigate the risks of wildfires spreading.

W-09: Account for the inclusion of defensible spaces into future developments (e.g., designing roads, pathways, sidewalks, and landscaping to create firebreaks) in areas where there is high wildfire risk.

This action would reduce the risk of wildfires spreading to and damaging homes.
Install reflective and/or vegetated roofs to reduce building energy consumption and the urban heat island effect.

“Cool” roofs covered with light colors or reflective pigments help direct away the sun’s heat, cooling buildings and surrounding areas. Similarly, “green” roofs covered with sedum and other low-maintenance vegetation help insulate buildings from solar heat. Such rooftops help reduce building cooling costs and heat-related illnesses and deaths.

LEAD: Cities/Towns, County, Fire Districts

PARTNER: State, Federal, Tribes

STRESSOR: Increasing Drought

TIMEFRAME: Short

Expand the region’s urban tree canopy and manage forests responsibly.

Planting more native and drought-tolerant tree species in rights-of-way, parks, plazas, and other urbanized areas reduces the urban heat island effect and hyperthermia risks by providing cooling shade (Also see Action W-04). Such trees also conserve water (less irrigation needed), improve air quality (e.g., capturing and storing carbon dioxide) and support infiltration (stormwater).

LEAD: Cities/Towns, County, Port

PARTNER: Nonprofits, Neighborhoods, Residents, K-12

STRESSOR: Increasing Drought

TIMEFRAME: Underway (limited)

Enhance training and financial support for wildfire response.

This action would lower the risk of wildfires spreading during periods of extreme heat and drought.

LEAD: Cities/Towns, County, Fire Districts

PARTNER: State, Federal, Tribes

STRESSOR: Increasing Drought

TIMEFRAME: Underway—Limited

ACTIONS LEGEND

TIMEFRAME

- Underway—Limited: A few community stakeholders are taking this action now
- Underway—Extensive: Many community stakeholders are taking this action now
- Short: Take action within the decade (0-10 years)
- Long: Take action within the following decade (10-20 years)

LEADS & PARTNERS

Name

- Agricultural Community
- All
- Business Community
- Cities/Towns
- County
- Development Community
- Federal
- Fire Districts
- Higher Education
- K-12
- LOTT
- Nonprofits
- ORCAA
- Port
- Property Owners
- PSE
- Residents
- State
- TCD
- Transit
- Tribes
- TRL
- TRPC
- Water Providers

Description

- Farms, ranches, suppliers, processors, shippers, sellers
- All community stakeholders
- Thurston Economic Development Council, chambers of commerce, private-sector companies
- Olympia, Lacey, Tumwater, Yelm, Tenino, Rainier, Bucoda
- Thurston County government
- Builders, surveyors, architects, lenders, real estate agents for all building types
- U.S. government agencies and installations (e.g., Joint Base Lewis McChord)
- Fire districts that serve rural and urban Thurston County
- Colleges and universities
- Kindergarten-Grade 12 schools (public and private)
- LOTT Clean Water Alliance
- Homeowners’ associations (HOAs), neighborhood associations and informal neighborhood groups
- Organizations that focus on land conservation/restoration (Sierra Club), emergency response (e.g., the American Red Cross), and other issue areas
- Olympic Regional Clean Air Agency
- Port of Olympia
- People who own commercial, industrial, residential or resource lands but don’t necessarily occupy them
- Puget Sound Energy
- People who live in Thurston County
- Legislature, Governor, and state agencies
- Thurston Conservation District
- Intercity Transit, Rural & Tribal Transportation (R/T)
- Nisqually Indian Tribe, Squaxin Island Tribe, Confederated Tribes of the Chehalis Reservation
- timberland Regional Library
- Thurston Regional Planning Council
- Thurston Public Utility District, municipal water systems, private systems

STRESSORS

Name

- Warmer Summer
- Warmer Winter
- Warmer Water
- Increasing Drought
- Intensifying Precipitation
- Sea-Level Rise
- Ocean Acidification
- Population Change

Description

- This stressor encompasses the risks of the region’s warm months (April-September) being warmer than they have been historically.
- This stressor encompasses the risks of the region’s cool months (October-March) being warmer than they have been historically.
- This stressor encompasses the risks of warming affecting the chemical, biological and/or physical characteristics of the region’s freshwater or marine waterbodies during any season.
- This stressor encompasses the risks of drought — a deficiency in precipitation over an extended period — increasing in frequency and intensity.
- This stressor encompasses the risks of “heavy” 24-hour precipitation events (top 1 percent) increasing in frequency and intensity.
- This stressor encompasses the risks of Puget Sound being higher than it was historically and the effects on the region’s shorelines and areas farther inland.
- This stressor encompasses the risks of Puget Sound absorbing more atmospheric carbon dioxide.
- This stressor encompasses the risks of climate change-induced displacement and migration (temporary or permanent) within, to and from our region.
5.3 Action Benefit-Cost Analyses

TRPC hired the Tacoma-based consulting firm Earth Economics to perform benefit-cost analyses (BCAs) of a pair of representative actions with climate adaptation and mitigation co-benefits:

- **Action F-01**: Evaluate and secure sustained funding to restore and protect riparian vegetation along freshwater and marine shorelines.
- **Action G-12**: Increase incentives to make urban infill and redevelopment projects more viable financially.

Earth Economics’ analyses [See Appendix F] incorporate the ecosystem services value of forests, grasslands, riparian shorelines and other land cover types. Such areas provide benefits — for example, providing wildlife habitat and filtering water — which the consultant quantified in real dollars.

The consultant produced a simple benefit-cost ratio that compared the value of ecosystem service benefits to the costs of inaction or action — for example, providing lower development fees or tax exemptions for urban infill and redevelopment projects. The analyses show that both actions F-01 and G-12 have positive benefit-cost ratios. Further, the analyses incorporate ecosystem service values that municipalities could consider when evaluating whether to take other actions in this plan. The BCA highlights include:

ADDITIONAL INFORMATION TO COME WHEN REPORT IS COMPLETE.

Placeholder for image.
6. Next Steps

“Continued emission of greenhouse gases will cause further warming and long-lasting changes in all components of the climate system, increasing the likelihood of severe, pervasive and irreversible impacts for people and ecosystems. Limiting climate change would require substantial and sustained reductions in greenhouse gas emissions which, together with adaptation, can limit climate change risks.”

— Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report, 2013
6.1 Ongoing Implementation & Engagement

As noted previously, some actions in this plan are new to the region, while other actions are underway.

The City of Olympia, LOTT, and Port of Olympia — which had representatives on this project's Stakeholder Advisory Committee — are now analyzing site-specific actions for protecting downtown Olympia assets from sea-level rise. This collaborative effort — which incorporates several of this plan’s priority actions — will wrap up at the end of 2018 and identify decision-making thresholds, implementation schedules, and funding needs.

In the meantime, TRPC encourages other community stakeholders — tribes, neighborhoods, businesses, etc. — to consider how, when, and where to apply this plan’s actions. Thurston County and the cities, towns and tribes within, for example, could consider ways to integrate adaptation actions into their development regulations or other policies. The project’s BCAs and other economic analyses can aid such decision-making efforts.

For its part, TRPC will continue working with local artists, educators, and other diverse partners to increase the community’s understanding of climate change causes, impacts, and responses.

In October 2017, the Timberland Regional Library, TRPC, City of Olympia, and other partners hosted “Art of Change,” a fun community event that merged climate art, science, and policy. Against the backdrop of an ocean acidification mural painted freshly on downtown’s Puget Sound Estuarium building, Timberland staged a “pop-up library” during fall 2017 Arts Walk. Patrons signed up for a card and checked out books, films, and other resources focused on climate change.

City of Olympia and TRPC staff hosted an adjacent information station that featured print and online materials related to their climate planning work. Among the materials were a draft of this plan, a climate “Resilience Toolkit” brochure, and an adaptation board game TRPC created as part of this project.
The Resilience Toolkit — also featured on TRPC’s website (trpc.org/resilencetoolkit) — includes links to information to enhance the community’s climate resilience: tips for enhancing household and neighborhood emergency preparedness; data and maps showing climate change impacts at national, regional and local scales; economic analyses of potential adaptation policies; and, library books, films, and online courses about climate change. The toolkit also links to TRPC’s Thurston Region Hazards Assessment Map — an interactive story map that enables users to view the locations of medical buildings, wells, fire stations, and other important assets and their exposure to floods, landslides, wildfires and other hazards.

TRPC encourages municipalities and other partners to link to the online toolkit from their website, as well as to place the brochure in their buildings (e.g., city halls, libraries, transit centers).

The board game, Resilience Road: A Game of Climate Change & Chance, enables players to explore the climate stressors, risks, and actions featured in this plan. Players attempt to reach “Resilience Ridge” by traveling through Thurston County along “Resilience Road,” drawing adaptation action cards and cooperating to respond to intensifying precipitation, drought, and other stressors along the way.

TRPC staff members presented the board game to other diverse audiences around the Puget Sound region — including to climate scientists and policy practitioners at the 2017 Northwest Climate Conference, in Tacoma, and to inmates at the Stafford Creek Corrections Center, in Aberdeen. The latter event was part of a Sustainability in Prisons Project symposium on climate change.

TRPC staff members will look for future opportunities to share and play the board game — for example, at neighborhood association, school, and municipal government meetings. The game is designed to be adaptable, so communities anywhere may play it using their own climate stressors and actions.

In summary, TRPC’s multifaceted public-engagement strategy responds directly to this plan’s guiding principle to “seek broad community input, as well as educate residents about climate change and inspire them to take action.” What better way to do this than with a simple board game?
6.2 Mitigation Planning

Many of this plan’s adaptation actions have mitigation co-benefits. For example, the same trees that stabilize slopes and cool urban areas also soak up carbon dioxide — the main greenhouse gas.

To be sure, the Thurston Region must do much more than planting trees to hit its emissions-reduction targets [See Section 3]. In mid-2017, TRPC hired a team of consultants to show just far we have to go.

Seattle-based Clean Energy Transition and the Stockholm Environment Institute developed for TRPC an “energy map” that shows Thurston County’s current energy sources (coal, gas, etc.) and end uses (buildings, vehicles, etc.). The consultants also graphed the Thurston Region’s baseline emissions in 2015 and projected business-as-usual emissions in 2050 [See Figure XX].

The consultants also developed “carbon wedge” analyses that show the Thurston Region’s baseline emissions in 2015 and projected business-as-usual emissions in 2050. The analyses also quantify the carbon-reduction values associated with existing federal and state policies (e.g., the Washington Building Code), as well as show the remaining gap between the impact of such policies and the region’s 2050 emissions target.

In 2018, TRPC will continue seeking outside funding support and working with local partners to develop a companion climate mitigation plan with actions sufficient to meet the regional emissions-reduction targets. TRPC’s climate vulnerability and risk assessments, as well as the energy map and wedge analyses, provide a solid foundation for this effort. This multifaceted approach, comprised of climate change adaptation and mitigation, recognizes that many actions — large and small — are needed to help the Thurston Region remain resilient.
8. References

9. Appendices

Appendix A: Science Summary
Appendix B: Vulnerability Assessment
Appendix C: Goal-Risk Report
Appendix D: Public-Engagement Strategy
Appendix E: Action-Risk Report
Appendix F: Action Benefit-Cost Analyses
Appendix G: Energy Map & Carbon Wedge Analyses